AP Calculus AB												Name__________________________________
Lessons 3-3 & 4-4: Rules for Differentiation, Part 1			Date _________________________________

Learning Goal:

· 

I can use rules of differentiation to calculate derivatives of polynomials, rational functions, and .

I. 	Some Previously Covered Derivative Rules:

Let u, v be differentiable functions, and c be a constant.

Derivative of a Constant Function					Power Rule



												


Constant Multiple Rule								The Sum and Difference Rule



										





Let .  Find .  [No negative nor rational exponents in your final 

answer.]  Believe it or not, you will use all of the above rules to find !











																										  
II.	Product and Quotient Derivative Rules

The Product Rule

The product of two differentiable functions u and v is differentiable, and



           or simply, 

          “First times the derivative of the second plus second times the derivative of the first.”
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Example 1


Let.  Find using the product rule.








Practice #1


Let .  Find  using the product rule.








	
The Quotient Rule


At a point where , the quotient  of two differentiable functions is differentiable, and


 or just  



Example 2


Let .  Find .
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Practice #2


Let .  Find .










Practice #3


.  Find .   ***Hint:  Try factoring and simplifying first!













***Practice #4 – THIS IS AN IMPORTANT TYPE OF PROBLEM – it is always on the AP test!

Let 




Let .  Find 							Let .  Find 
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III.  The Derivatives of 


[image: ]You  may recall from Math 3 and/or Math 4 that .  Another interesting property of e is.  See the graph and table to the right to “verify”.





																											
Look at the following limit.  What does this work tell you?


 



													The derivative of ex is simply _________.







Example 3


Let.  Find .








Practice #5


Let .  Find .
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Now that we know the derivative of , it makes sense to learn the derivative of its inverse .  Later in the year, when we learn what is called implicit differentiation, we will learn how to derive the derivative of .  For now, just understand that



																				       
Practice #6


Let .  Find .





IV.	Second and Higher Order Derivatives
[image: ]















											
Practice #7


Let .  Find .













																										OVER 
V.  Mixed AP Exam Practice Problems 


1.	Evaluate .



A.			B.  		C.  6		D.  		E.  nonexistent





2.	Evaluate .




A.  		B.  		C.  		D.  		E.  nonexistent





***2017 Exam Questions:
[image: ]
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The derivative y' = dy/dx is called the first derivative of y with respect to x. The first deriva-
tive may itself be a differentiable function of x. If so, its derivative,

u_Ly’_d(Q)_dzy

Tdx dxldx] dx?

is called the second derivative of y with respect to x. If y” (“y double-prime”) is differen-
tiable, its derivative,

w_ Ay _dy

dx  dx®’

is called the third derivative of y with respect to x. The names continue as you might ex-
pect they would, except that the multiple-prime notation begins to lose its usefulness after
about three primes. We use

Yo = %y(m) oy super "

to denote the nth derivative of y with respect to x. (We also use d"y/dx".) Do not confuse
¥ with the nth power of y, which is y".
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