The Nervous System: The Action Potential

1.	a. The action potential changes the membrane potential from
	mV (resting) to+30 mV and back again to the resting membrane
	potential (-70 mV).
	b. This results from a change in membrane permeability first to <u>Na+</u>
	then to <u>K+</u> due to the opening of what type of ion channels?
	voltage-gated
2.	a. Where is the density of voltage-gated Na ⁺ channels the greatest?
	<u>axon hillock</u>
	b. What areas of the neuron generate signals that open these voltage-gated
	channels? <u>dendrites and cell body</u>
	c. Opening of these channels causes the membrane to
	<u>depolarize</u> (voltage change).
3.	a. If the membrane reaches the trigger point, known as
	threshold , what electrical potential will be generated?
	action potential
	b. During the depolarization phase, voltage-gated Na+ channels open
	and Na+ enters the cell.
4.	What are the two processes that stop the potential from rising above +30 mV?
	a. inactivation of the voltage-gated Na+ channels
	b. opening of the voltage-gated K+ channels
5.	a. The opening of voltage-gated $K^{\scriptscriptstyle +}$ channels cause the membrane to
	<u>repolarize</u> .

	b. Does K ⁺ move into or out of the cell? <u>out of</u>
	c. If the membrane potential becomes more negative than -70 mV, this is
	called <u>hyperpolarization</u> .
	d. This potential is caused by what characteristic of K^+ permeability?
	K+ channels are slow to close
6.	a. After an action potential, the neuron cannot generate another action
	potential because Na+ channels are inactived. This period is called the
	<u>absolute refractory</u> period.
	b. During the <u>relative refractory</u> period, the cell can generate
	another action potential but only if the membrane is <u>more</u> (more or
	less) depolarized.
7.	a. Conduction velocity along the axon is increased by what two characteristics?
	1. <u>the diameter of the axon</u>
	2how well the axon is insulated with myelin_
	b. Conduction along a myelinated axon is called
	<u>saltatory</u> conduction.
8.	a. Name the disease whose symptoms include loss of vision and increasing
	muscle weakness: <u>multiple sclerosis</u>
	b. What does this disease destroy? <u>myelin sheath of CNS axons</u>
	c. How does this stop an action potential? there is too much distance between the nodes of Ranvier