Action Potential Worksheet

- 1. Explain how an action potential and graded potential are different.
- 2. Describe the following in your own words
 - a. resting potential
 - c. hyperpolarization

- b. depolarization
- d. repolarization

- e. threshold
- 3. What triggers an action potential? What happens to the membrane to trigger an action potential?
- 4. What is a positive feedback loop? How does a neuron create a positive feedback loop?
- 5. What is the role of the voltage-gated sodium channels for producing an action potential?
- 6. What is the role of the voltage-gated potassium channels?
- 7. What would happen if the voltage gated sodium and potassium channels opened
 - a. at the same time?
 - b. further apart? (longer delay)
- 8. What is the absolute refractory period? What is the relative refractory period?
- 9. Consider the following three diagrams of a nerve cell membrane. They show resting potential, depolarization, and hyperpolarization. Figure out which one is which, then draw them in the order they occur in a cell that undergoes an action potential

outside	outside			outside				
Na⁺ K⁺ Na⁺ K⁺ Na⁺	Na⁺	Na⁺	Na⁺	Na ⁺ Na ⁺	⁻ Na ⁺ Na ⁺	[*] Na⁺		
Na ⁺ K ⁺ Na ⁺	K⁺ Na⁺	K⁺ Na⁺	K⁺	K⁺	K⁺	K ⁺		
inside potential: -80 mV	inside	inside potential: +30 mV			potent	tial: -70 mV		

- 10. Graph the following set of voltage and time data. Time in milliseconds should be on the x-axis and membrane potential in millivolts should be on the y-axis. Label
 - a. absolute refractory period
 - c. depolarization
 - e. hyperpolarization
 - g. repolarization

- b. action potential (AP)
- d. graded potential
- f. relative refractory period
- h. resting membrane potential

Potential (mv)	-70	-70	-65	-70	-70	-60	-70	-70	-50	+30	-65	-75	-78	-71	-70
Time (ms)	0.2	0.5	0.7	1.0	1.5	1.7	2.0	2.5	3.0	3.5	4.0	4.2	4.5	5.0	5.5