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Chapter 4
Applications of Derivatives

Section 4.1 Extreme Values of Functions
(pp. 187-195)
Exploration i Finding Extreme Values

1. From the graph we can see that there are three critical
points: x =—1, 0, 1.

2.

3.
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Critical point values: f(-1)=0.5, f() =0, F(1)=0.5
Endpoint values: f(-2)=04, f(2)=04
Thus f has absolute maximum value of 0.5 at x = -1 and

x =1, absolute minimum value of 0 at x = 0, and local
minimun value of 0.4 at x = -2 and x = 2,

{~2,2}by (1.1}

The graph of f* has zeros at x = -1 and x = 1 where the
graph of f has local extreme values. The graph of £ is not
defined at x = 0, another extreme value of the graph of £,

[~2,2) by [~1, 1]

&

Using the chain rule and vg;(fxl) =" we find

a W, 1
dx x40

Quicks Review 4.1

1L

2.

1¢.

e &)= —sin (Inx) —%mxm

1 4 1
’ = n———4—- =

T w0

iy Bnig 212 g 22, G 2
D e O PAED CEED

2x

= (9~ x? 7 (2x) = s

sin (Inx)
x

Hx)=e™ wEinx = 2e%*
dx

. Graph (c), since this is the only graph that has positive

slope at c.

. Graph (b}, since this is the only graph that represents a

differentiable function at a and b and has negative
slope atc.

. Graph (d), since this is the only graph representing a

function that is differentiable at b but not at q.

. Grzfph (a), since this is the only graph that represents a

function that is not differentiable at ¢ or b.

. Asx— 3", ¥9—x% — 0", Therefore, lim f(x)=co.
x—3"

Asx—3*, Jo—x* 50" Therefore, lim f(x)=oe.

x-—-3t
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10. Maximum at x = a, minimum at x=¢;
The Extreme Value Theorem does not apply since the
function is not continuous.

11 (a) gg(ﬁ - 2x)=3x% =2

F=31°-2=1

d 11 The first derivative f )= _—}2— + 1 hasazeroatx=1.
(b) -&;(x-}—2)=1 X x

Critical point value: f(1)=1+Inl=1

‘(3)=1
f Endpoint values: £(0.5) =2+ In0.5=1.307
{¢) Left-hand derivative: i
g SR (241 22+ k)] -4 fe)=7+n4=1.636
B30~ h 0~ h i
B+ 6R + 10k Maximum value is 7t In4 atx=4;
=07 h minimum value js Latx =1;
=h}n¥]1 {(h" +6h+10) )
i
=10 ) local maximum at(wzw, 2 1::2)
Right-hand derivative:
m fC+R-f2) lim R+hy+2]-4 12. The first derivative g'(x) = —¢ ™ has no zeros, so we need
k0 4 h B0 h only consider the endpoints.
it gD e gme =t
= lim 1 e
B "12“’(“ Maximum value is e at x = —1;
Since the left-and right-hand derivatives are not equal, minimuem value is 1 atx=1.
f/(2) is underfined. ¢
L, 1
12. (a) The domain is x # 2. (See the solution for 11.(¢)). 13. The first derivative A'(x) = Py has no zeros, so we need
®) £ = {3)52 -2, x<? only consider the endpoints. ‘
1, x>2 B(0)=1nl=0 h(3) = In4

Maximum valueislndatx=3;
Section 4.1 Exercises

1. Minima at (-2, 0) and (2, 0), maxiroum at (0, 2}

2. Local minimum at {~1, 0, local maximum at (1, 3

minimum value is O at x =0,

.. —x2
14. The first derivative k"(x) = —2xe™" has a zero at x = 0.
Since the domain has no endpoints, any extreme value must

3. Maximum at (0, 5) Note that there is no minimum since the occur at x=0. Since k(0) = e,,gz —1and lirg k(x) = 0, the
X~ytoo

" endpoint (2, 0} is excluded from the graph.

4. Local maximum at (-3, 0), local minimurm at (2, 0), maximum value is 1 atx=0.
maximum at (1, 2), minimeam at (0, -1) ?z
5. Maximum at x = b, minimum at x = ¢,; 15. The first derivative f'(x)= cos(x + Z), has zeros

The Extreme Value Theotem applies because f° is continuous

on {a, b}, so both the maximum and minimum exist. Zf_ Sx

atx = 4’ x= —4“
6. Maximum at x = ¢, minimaum at x = 5, _
The Extreme Value Theorem applies because £ is continuous Criticatl point values: x =

on {a, b, 50 both the maximum and minimum exist. 4
. 5

7. Maximum at x = ¢, no minimunm; . xe= vy flxy=-1
The Extreme Value Theorem does not apply, because the
function is not defined on a closed interval. Fndpoint values: x=0 Fx) = —=

8. No maximum, no minimum;
The Extreme Value Theorem does not apply, because the
function is not continuous or defined on a closed interval.

9. Maximum at x= ¢, minimum at ¥ =a; Maximum value is | at x ==
The Extreme Value Theorem does not apply, because the

function is not continuous. St

minimum value is -1 atxs—

PN

T



15. Continued

1
local mimmum at| 0, —= |;
( V2 J

local maximum at (ZE R O)
16. The first derivative g'(x) = sec x tan x has zeros

at x =0 and x = 7 and is undefined at x =

Since g(x) = sec x is also undefined at x = —, the critical

N]?i NEN

points occur only at x =0 and x = .
Critical point valves: x=0 glxy=1
x=rn  gx)y=-

Since the range of g(x) is (~oe, — 1JU[1, e}, these values

fust be a local minimum and local maximum, respectively.

Local minimum at (0, 1} Eocal maximwm at (7, -1
Y7, The first derivative f'(x)= — 3 is never zero but is

undefined at x = 0.

Critical point vaiue: x=0 JFlx)=0
Endpoint value: x==3 flx)= (—3)2’ 3
=340 %1552

Since f(x) > 0 for x # 0, the critical point at x =0 is a local
minimum, and since f(x}S(-3)¥ for-3 <x< 1, the
endpoint valve at x = -3 is a global maximum.

Maximum vale is 32 at x = ~3;

minimum value is 0 at x=0.

. o , 3 s, .
18. The first derivative f/(x) = ¥ 25 is never zero but is

undefined at x = (.

Critical point value: x=0 Fx=0

Endpoint value:  x=3  f(x)=3%¥%=1.933

Since f(x) < 0 for x < G and f{x) > 0 for x > 0, the critical
point is not a local minimum or maximum. The maximum
value is 3% at x= 3.

19. | \/

Hinimtm
|x=z L

Y3
[—2,6]by[-2,4]
Minimum value is 1 atx=2.

N

0
uﬁ'ﬁ""sn!m [ itngrs [v=s.onusezs

[—6, 61 by [~2,7]

To find the exact values, note that y' = 3x% =2, which is

!2 .
zero when x = £ 5 Local maximum at

Section4.] 163

\/; 4+ i) (~0.816, 5.089}; local minimum at

—‘é: 4—?—{} (0.816,2.911)

2L

s

e W

H=1, 3333333 1y=-1,51B518
[-6, 6] by [-5, 20]

To find the exact values, note that
¥ = 3x7 + 2x -8 = (3x ~4) (x + 2), which is zero when

X=-20rx= Lj; Local maximum at (=2, 17); local minimum

(4 41
atf —, ——
3 27)
22, /

-
f

[—6, 6] by [—4, 4]

Note that y* = 3x2 — Gx +3 = 3(x ~ 1)2, which is zero at
x=1. The graph shows that the function assumes lower
values to the left and higher values to the right of this point,
so the function has ro local or global extreme values,

™2

4,41 by [—2, 4]

Minimum valve is Qatx =~f and at x = I,

"I
s [l

[~4:7, 47] by [~3.1, 3.1]

To confirm that there are no “hidden” extrema, note that

¥ (2 - 1722 = ( 2—2x 5 which is zero only at x =0
ros

and is undefined only where y is undefined. There is a local
maxinum at {0, 1),
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MR EL R e
B=

ki N
[~1.5, 1.5] by [~0.5, 3]

The minimum valueis 1 at x=0.

26. \4‘/

Hinieurm
H0

[—4.7, 471 by (3.1, 3.1]

The actual graph of the function has asymptotes at x = &1,
s0 there are no exirema near these values. (This is an
example of grapher failure.) There is a local minimum

at (0, 1).
AN

=2
47,47 by {-3.1, 3.1}

Maximum value is 2 atx=1;
minimum value is Qatx=-1 and at x= 3,

28.
s

b

27,

ggs{imum

finmam s

f—4, 41 by [—80, 30}

Minimum vakue is —%§ atx = -3;
local maximum at (0, 10);

local minimum at (1, %—]

_—

=8
{—5, 51by{-07,07]

29,

b

;sg}if’uﬂﬂ

. L1
Maximum value is 3 atx=1;

.. .1
minimum value is ME atx=-1.

30.

1

Minimuny
ey Y-8

[—5, 5] by [—0.8, 0.6]

. 1
Maximum value is 3 atx =0

. .1
minimum value is —5 atx =~2.

L/

[—6, 6] by {0, 12]

Maximum value is il atx=5;
minimum value is 5 on the interval [-3, 2];
local maximum at (-3, 9}

Vo
L/

[-3, 8] by [5, 5]

Maximum value is 4 on the interval [5, 7);

31

32.

minimum value is -4 on the interval [-2, 1}

33

9

{~6,6] by [~6,6]

Maximum value is 5 on the interval 3, oo);

minimum value is -5 on the interval (—ee, -2].

TN\

{6, 6] by [0, 9]
Minimum value is 4 on the interval [-1, 3]

35, i /

Raxiur
lH: ] ¥Rl 034E207

(—4.41by[-3,3]

Sx+4

Rfx

Ve xm(i}wb-g—x'm(xw% 2y

AT

SN



35. Continued
crit. pt. derivative extremum value
x= mi 0 local max v]m%l()”3 = 1,034
5 25
x=0 undefined local min 0

LT
W/

i-4,41by [~3,3]

p_ 203 2 am, o __8952“8
Yy =x {2x)+“3~x (x* —4)= 3%[;
crit. pt. derivative | extremum | value
x =} 0 minimum -3
x=0 undefined local ‘max 0
x=1 0 minemum -3
37,
BT S0 =2
[—2.35, 2.35] by [-3.5, 3.51
3= e e (2) 4 (DN £
Wa-x?
_ —x* +(4—x2) _ 4—2x"
- \/ 4-x* - \/ 4—x*
erit. pt. derivative extremun value
x=-2 undefined local max 0
x=—2 0 minimum -2
x=A2 O maximum 2
undefined local min 0

¥=4.MGLR7ER
[—4.7,471by [-1, 5]

ymxz- 2\/:-::--“(—1}"%2:('\1'3—):
-x

_—xt 4 dx(3-x)  -Sx*+12x
2W3i-x 23-x
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crit. pt derivative | extremum value
x=0 0 minifnm 0
=2 0 local max | 43152 ~ 4462

5 125
x=3 undefined minimum 0
39, \ 1
{~4.7,4.7] by [0, 6.2]
)2, x<d
R | RN
crit. pt. } derivative ] extremuin i value
x=1 1 undefined l minimum I 2
40. \\
]
[~4.4iby -1, 6]
. " x<0
Y -2k, x>0
crit. pt. i derivative J extremum } value
x=0 undefined local min 3
x=] O ocal max 4
41.
(-4, 6] by [-2, 6]
e ~2x-2, x<1}
Y ~2x46, x>1
Crit. pt. ] derivative extremum value
x =~} 0 maximum 5
x=1 undefined focal min i
x=3 b AKITIET, 5
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42.

/“"\]

M
?:i-."ﬂ%qsss Y2-3,078204

{-4, 6] by [-5, 5]
We begin by determining whether f'(x) is defined at

x =1, wher

1, 1 15

T Bt B L -4 |
Jo=9 4" 27 4

%% ~6x% + 8z, x>1
Left-hand derivative:

Laamzo L L.
U+ = QR+ -3

o FAER=FO

hes0~ h A0~ h
I
o 4R
.1
- iy =)
= —]
Right-hand derivative:
tim Fa+m—-
A0+ h
3 2 -
- im A+ By ~6(l+R)y +8(1+h)-3
h-a0t h
3 g2
= lim b —-3h"—h
A0 h
= lim (2% ~3h-1)
R0t
=]
! X i, xz]

Thus f'(x)={ 2~ 2
3x? -12x+8, x>}

Note that—%x-— % =0 when x =—1I, and

124127 - 4(348)

2(3y

3x% —12x+8=0 whenx =

_l2xas o 23
e

23

But 2 =" 0.845 <1, so the only critical points occur at

243

x=—landx= 24w-"ém~ = 3,155,

crit. pt. | derivative i extrernum l value
x=—1 0 {ocal max 4
x=3.155 0 local max =-3.079

43. (a) V(x)=160x—52x% +4x°
V() = 160 — 104 +12x% = 4(x ~ 2){3x ~ 20)

The only critical point in the interval {0, §) isatx=2.
The maximum vahue of V{(x) is 144 at x= 2.

(b) The targest possible volume of the box is 144 cubic
units, and it occurs when x = 2.
4. (a) P'(x)=2-200x"

The only critica! point in the interval {0, eo) is at x = 10,
The minimum value of P(x) is 40 at x = 10.

(b} The smallest possible pertmeter of the rectangle is
40 units and it occurs at x = 10, which makes the
rectangle a 10 by 10 square.

48, False. For example, the maximum could occur at a corner,
where f7(¢) would not exist,

46, Palse. Consider the graph below.

r.

-

47. E. i(4x—x2 +6)=d—2x
dx
4-2x=0
x=2
Fy =42~ 2P +6=10
48. E. See Theorem 2.

d . 3 2
49.B. —{(x" —6x+3)=3x" -6
dx(x X+ 5) = 3x

32 —6=0
x=i\[£

50.B.

51. (a) No, since f*(x) = %(x —2)™Y3, which is undefined
atx= 2. .

(b) The derivative is defined and nonzero for all x = 2.
Also, F(Dy=0and f(x)>0 forall x# 2.

() No, f (x) need not have a global maximum because its
domain is all real numbers, Any restriction of fto a
closed interval of the form [, #] would have both a
maximum value and & minimum value on the interval.

(d) The answers are the same as (a} and (b) with 2 replaced
by a. S

\

~x*+9x, x<-3or0<x<3

52. Note that f(x)=
F@&) {x3-—9x, -3<x<0orxz3.

~3x% 49, x<-30r0<x<3

Therefore, f(x)= .
7 {Bxlwg, ~3<x<0orx>3.

(a) No, since the left- and right-hand derivatives at x= 0 are
-9 and 9, respectively.



32. Continued

(b) No, since the left- and right-hand derivatives at x = 3 are
—18 and 18, respectively.

(e} No, since the left- and right-hand derivatives at x = -3
are ~18 and 18, respectively.

{d) The critical points occur when
FHx)=0tx =% \/3 ) and when f’(x) is undefined (at
x =10 or x = #3). The minimum value is 0 at x = -3, at
x= (), and at x = 3; locai maxima cocur at

(-/3,6V3) and (+3,6+/3),

53.(a) f'(x)=3ax’ +2bx+c is a quadratic, so it can have
0, 1, or 2 zeros, which would be the critical points of f.

Examples:

-3, 3] by (-5, 5]

The function f{x)= x* 3 has two critical points at
r=-~land x=1.

/

My

Va

{“3, 3] bY E"""S, 5]

The function £(x) = x° ~1 has one critical point at
x=0.

/[

[~3, 31 by [~3, 5]

The function f{x) = x° + x has no critical points.

(I} The function can have either two local extreme
values or no extreme values. (If there is only one critical
point, the cubic function has no extreme values.)

54. (a) By the definition of local maximum value, there is an
open interval containing ¢ where f(x) = f(¢), s0

Fla- fley 0.

{b) Because x — ¢+, we have (x — ¢) > 0, and the sign of the
quotient must be negative (or zero). This means the
limit is nonpositive.

(¢) Becanse x — ¢, we have {x — ¢) < 0, and the sign of the

quotient must be positive (or zero). This means the limit
is nonnegative.
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(d) Assuming that /’{c) exists, the one-sided Himits in
(b} and (c) above must exist and be equal. Since one is
nonpositive and one is nonnegative, the only possible
common value is 0.

{e) There will be an open interval containing ¢ where
fEx) — f(e} 2 0. The difference quotient for the left-hand
derivative will have to be negative {or zero), and the
difference quetient for the right-hand derivative will
have to be positive (or zerc). Taking the limit, the left-
hand derivative will be nonpositive, and the right-hand
derivative will be nonnegative. Therefore, the only
possible value for f(¢) is 0.

58, {a)

i~0.1, 0.6] by [-1.5, 1.5]

f{0)=0 is not a ivcal extreme value because in any
open interval containing x = 0, there are infinitely many
points where £ (x) = 1 and where f(x)=~1.

{b) One possible answer, on the interval [0, 17:

1
1- x)cos—, 0<x<«l
flxy={Um R0 *
0, x=1
This function has no local extreme value at x = 1. Note
that it is continuous on [0, 17.

Section 4.2 Mean Value Theorem
(pp. 196-204)

Quick Review 4.2

1 2x* ~6<0
2x% <6
%<3
- 3<x<\/§
Interval: (m\/?: A3 )

2. 3% ~6>0
32 >6
X2
x <=2 0rx>\5
Intervals: (—oo, ——\/5) U2, 00

3, Domain: 8- 2x* 20
§=22x°
4> 5*
251572
The domain is [-2, 21

4. f is continuous for ail x in the domain, or, in the interval
[""2, 2]
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5. f is differentiable for all x in the interior of its domain,
or, in the interval (-2, 2},

6. We require x* — 1 # 0, so the domain is x # £1.

7. f is continucus for all x in the domain, or, for all x # 21,

8. f is differentiable for all x in the domain, or, for all x # +1,

9., T=-2-2+C
T=4+C
C=3

10. —1={)P +2D+C
—i=34+C
C=~4

Section 4.2 Exercises
1. (a) Yes.

d 2
b) f'{ix)=—x"+2x—-1=2x+2
(b) f{x) x X x

2= (=1}

2e+ 2 e =3
1—-0
i
¢ -
2
2.{a) Yes.
. d an 2 p
b T e e
(b} f(x) dxx 3*
_?‘_C"l.'?a 1 0 =1
3 1 0
8
Cm—.
27

3. (@) No. There is a verticle tangent at x= 0.
4, (a) No. There is a corner at x = 1.

5.{a) Yes.

1.....
Vi-x*
1 :(12:/2)—(—7.:/2}__2
Vi 1eh 2

V- =2
k4

) f’(x)ﬁ%ﬁn“x=

1w df* = Q771
6. (a) Yes.
M) f'(x)= i—mw h=—
1 _b3-hl
-1 4-2
4-2
1=2.820
€= n3- lnl+ 8

7. (@) No, The fanction is discontinuous at x =

N!a

8. (a) No. The split function is discontinuous at x =1

><

9, (a} The secant line passes through (0.5, f(0.3)) = (0.5, 2.5)
and (2, f(2)) = (2, 2.5), so its equation is y =2.5.
(b) The slope of the secant line is 0, so we need to find
¢ such that £ (©)=0.
I-¢2 =0
w2 = 1
c=1
fla=fl=2
The tangent line has slope O and passes through (1, 2),
s0 its equation is y = 2.
10. (2) The secant line passes throagh (I, f(1)) = (1, 0} and
3, £ = (3, V2), 50 its slope is
Va-0 V21
-1 2 o

1
The equation is y = —=(x - 1}+0
N

or y=0.707x~0.707.

Oryf f

(b) We need to find ¢ such that f'(¢) = —‘/%

[ I

i

i

B
Mgmw"_\§|§li*"

==

f(c)mf(%):J%:T/l_g

The tangent line has slope L and passes through
\/E p g

1 3 |
fts equation is y = (x - m]-!- zr OF
(2 J“) k 2UT2)T R
y= \[_x—- J_ ,or y=0707x—-0.354.

11. Because the trucker’s average speed was 79.5 mph, and by
then Mean Value Theorem, the trocker nust have been
going that speed at least once during the trip.

12. Let £ (#) denote the temperature indicated after f seconds.
We assume that f7{#) is defined and continuous for
05520, The average rate of change is 10.6°Flsec.
Therefore, by the Mean Value Theorem, F'(c) = 10.6°Fisec
for some value of ¢ in [0, 201. Since the temperature was -
constant before £ = 0, we also know that f7(0) = 0° F/min.
But f'is continuous, so by the Intermediate Value
Theorem, the rate of change £/(r) must have been
10.1°F/sec at some moment during the interval.

13. Because its average speed was approximately 7.667 knots,
and by the Mean Value Theorem, it must been going that
speed at least once during the trip.



14. The rumner’s average speed for the marathon was
approximately 11.909 mph. Therefore, by the Mean Value
Theroem, the runner must have been going that speed at
least once during the marathon. Since the initial speed
and final speed are both O mph and the runner’s speed is
continuous, by the Intermediate Vaine Theorer, the
runner’s speed must have been |1 mph at least twice.

15.a) f(x)=5-2x

. , 5 , 5
Smcef(x)>00n ’“"'00,"5 ,f(x):oatxﬂgyand

, 5
f{x)<0on 3 eo |, we know that f (x) has a local
maximum at x = E Since f é = Eﬁ- the local

2 2 4
. . 5 25 L .

maximum occurs at the point -2— —4— .(This is also a
global maximuim.)

(b) Since f{x)>0o0n (wm, g}, F{x) is increasing on

{c} Since f'(x)y<0on (g, oo], J{x)is decreasing on

3 .
2’ )
16. (a) g'{x}=2x-1

Since g'(x) <0 on [ww, éJ, gx)=0atx= é—, and
g(x)>0 on(wglm, oo], we know that g (x) has a local

S

ripiem at x =

Since g[}i) = ng’ the local minimum oceurs at the
(1 49 L. ..
point T (This is also a giobal minimum.)
{(b) Since g’(x) > 0 on (-;—, oo), £(x) is increasing on

EN

() Since g’(x) <0 on (moo, %}, g(x) is decreasing on

-3
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17. (@) B (x)=~ mz—z—
x

Since A'(x) is never zero is undefined only where h(x) is
undefined, there are no critical points. Also, the domain
{—o0, 0}UJ(0, 0} has no endpoints. Therefore, h(x) has
no local extrema.

(b} Since A'(x) is never positive, A(x) is not increasing on
any interval,

() Since A"(x)} < O on (oo, 0}1J{D, oo}, hx) is decreasing on
(oo, () and on (0, =),

18. (a) k'(x)m—%
X

Since &’(x) is never zero and is undefined only where
kix)is undefined, there are no critical points, Also, the
domain {—ee, (1)1 (0, ==} has no endpoints. Therefore,
k(x)has no local extrema.

{(h) Since k'(x) > O on (—=0, 0), k(x) is increasing on
{0, 0).

(e} Since £"(x}<0 on (0, =), k(x) is decreasing on (0, =3,

19. (@) f'(x)=2¢"
Since f'(x) is never zero or undefined, and the domain
of f{x} has no endpoints, f(x) has no extrema.
(b} Since f'(x) is always positive, f(x) is increasing on
(o0, o),
(¢} Since f*(x)}is never negative, f{x) is not decreasing on
any interval.

20. () f(x)=—0.5e"0%"

Since f7{x) is never zero or undefined, and the domain
of f(x) has no endpoints, f(x) has no extrema.

(b) Since f'(x) is never positive, f(x) Is not increasing on
any interval.
(¢} Since f'(x) is always negative, f(x) is decreasing on

{—vo, 00),

1

Wx+2

In the domain |_—2, oo), ¥y is never zero and is undefined
only at the endpoint x = —2. The function y has a local
maximum at (-2, 4). (This is also a global maximum.}

21.(a) ¥ =

(b) Since ¥’ is never positive, y is not increasing on any
interval.
{c) Since y” is negative on (-2, =), y is decreasing on

[__2, oc).
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22, (a) ¥ = 4x° ~20x = 4x(x+v5Xx—5)
The function has critical points at x = —5, x =0, and
xom \/g Since y' < Qon(~ee,— x@) and (0, «/5) and

¥ >0 on(—«/g, 0) and(«/g, oo}, the points at x = i\-/g

are local minima and the point at x = G is a local
maximum. Thus, the function bas a local maximum at

(0, 9) and local minima at (—/5, - 16) and (5, 16).
(These are also global minima.)

(b) Since y' >0 on (_\/5 ,Oand (\E . ), v is increasing on
(=5, 0] and [+/5, ).

{¢) Since y' >0 on (—oo, — «/5) and (0, Jg ), v is decreasing
on (o0, ~+/5] and [0, V51,

23

Tl lyves.oraooan
{—4.7, 471 by [-3.1, 3.1]

@ F@=x 2J&1'3§ S

_ —3x+8

2y4d—x

i . 8
The local extrema oceur at the critical point x = 3 and at

the endpoint x = 4, There is a local (and absolate)
8 16
maximum at{ —, —= | or approximately (2.67, 3.08),
( 3’33 ]

and a local minimum at (4, 0).

{b} Since f'(x)>0 on(—w, —2—), F(x) is decreasing on

-4

{c) Since f'(x) <0 on (%, 4], Ff(x) is decreasing on
[fi, Al
3 wd

by=-7.559526
[~5, 51by [—15, 15}

4x+8
3203

@) g(x0=x" M+ %x'“m (x+8)=

The local extrema can occur at the criticai points x = -2
and x =0, but the graph shows that no extrema occurs at
x = 0. There is a local {and absolute) minimum at

(—2,—62/5 ) or approximately (-2, —7.56).
(h) Since g’(x) > 0 on the intervals (-2, () and (0, +°), and
g(x) is continuous at x =0, g(x) s increasing on [-2, ea).
(¢) Since g’(x) < 0 on the interval (-eo, -2}, g(x) is
decreasing on (oo, -2},

25.

aximn
e ¥a.25

[35, 5] by [-0.4,0.4]

P BED-(C02x)  xF -4
(x% +4) T 4y
L G-
T (x? 4y
The local extrema oceur at the critical points, x =12,

(a) i'(x)=

There is a local (and absolute) maximum at(wz, é)

and a local (and absolute) minimum aE(Z, - %)

{b) Since k'{x) > 0 on (oo, —2) and {2, o°), h(x) is
increasing on (o, —2] and [2, #0).
(¢) Since A'(x) <0 on {~2,2), A(x) is decreasing on {2, 2]

S

[—4.7, 47 by [—3.1, 3.1]

2 2
@ Koo = {x —4:)2(1)—;1(235) o Jc2 +42
(x* -4) (x4}

Since k7 (x) is never zero and is undefined only where
k(x) is undefined, there are no critical points. Since there

are no critical points and the domain includes no
endpoints, k{x) has no local extrema,

(b) Since k'(x) is never positive, k(x) is not increasing on
any interval,
() Since k(%) is negative wherever it is defined, k(x) is

decreasing on each interval of its domain; on (—oe, -2),
(-2, 2), and (2, ).



27. /
%

T e
{4, 41 by [~6, 6]

(@) f'(x)=3x%-2+2sinx
Note that 3x>~2> 2 for |x| 2 1.2 and |2 sin x|< 2 for
all x, so f/(x) >0 for | x| 2 1.2. Therefore, all critical
points occur in the interval (1.2, 1.2), as suggested by
the graph. Using grapher technigues, there is a local
maximum at approximately (~1.126, -0.036), and a
local minimum at approximately (0.559, ~2.639).

(b) f (x) is increasing on the intervals (—e, —1.126] and
[0.559, #=}, where the interval endpoints are
approximate.

{c) f (x) is decreasing on the interval [—1.126, 0.559], where
the interval endpoints are approximate.

7

[-6, 6] by {—12, 12]

(@g)=2~sinx
Since 1 < g'(x) £ 3 for all x, there are no critical points.
Since there are no critical points and the domain has no
endpoints, there are no local extrema,

(b) Since g'(x) > 0 for all x, g(x) is increasing on (—oe, o),
{c) Since g'(x) is never negative, g{x) is not decreasing on
any interval.
52
29. f(x)= ey +C
30, f(x)=2x+C
3L f)=x*-x*+x+C
32, f(x)=—cosx+C
33 floy=e"+C
M fy=ln{x~-1+C

35. f(x)m~i+C,x>0

f@)=1

Lic=
2

C=

—t B |

=14l x50
x 2
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36 fO=x"+c
fh=-2
W2
I+C=-2
C=-3
fxy=x""-3
37, FO=h(x+2)+C
fED=3
n(-1+2)+C=3
0+C=3
C=3
FRy=ln(x++3

38. flxy=x*+x—sinx+C

=13
0+C=3

C=3
fxy=x* 4 x—sinx+3

39. Possible answers:

(a)
N

(-2, 41 by (-2, 4]

®) V\/

[~1, 4} by [0, 3.5]

(e}

1,41 by [0, 3.5]

40. Possible answers:

{(a) I

[—1, 51 by [-2,4]

®) "1"\——7“

[—1, 5 by [~1, 8]
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40, Continued
]

1
[—1, 5] by [-1. 8]

G)

[l
[~1,5]by [-1,8]

41. One possible answer:
i\ ¢
W

[-3, 3] by {~15, k51

42, One possible answer:

/\/

{3, 3} by [-70, 70]

43, {a) Since v'{N) = 1.6, () = 1.6t + C. But v{0) = 0,50 C =0
and W) = 1.61, Therefore, v(30) = 1.6{30) = 48. The
rock wiil be going 48 m/fsec.

(b) Let s(f) represent position.
Since 5°(t) = v(ty= 1.6, 5(£) = 0.8¢2 -+ . But s(0) = 0,
$0 D =0 and s(2} = 0.8:2. Therefore,
$30) = 0.8(30)% =720, The rock travels 720 meters in
the 30 seconds it takes to hit bottom, so the bottom of
the crevasse is 720 meters below the point of release.

(¢} The velocity is now given by v() = 1.6+ C, where
(0} = 4. {Note that the sign of the initial velocity is the
same as the sign used for the acceleration, since both act
in a downward direction.} Therefore, v(f) = 1.6¢+ 4,
and s(¢) = 0.8:2 + 4t + D, where () =0 and so D= 0.
Using s{#) = 0.872 -+ 47 and the known crevasse depth
of 720 meters, we solve s(1) = 720 to obtain the
positive solution ¢ = 27.604, and so w(z) = vw(27.604) =
1.6(27.604) + 4 = 48.166. The rock will hit bottom after
about 27.604 seconds, and it will be going about
48.166 m/sec.

44, {a) We assume the diving board is located at 5 == Q and the
water at s = 0, so that downward velocities are positive.
The acceleration due to gravity is 9.8 m/sec?, so

v(£)=9.8 and w(1) = 9.8¢ + C. Since W) = 0, we have
v = 9.8¢ Then the position is given by s(¢) where

58y =v(t) = 9.8¢, 50 5(f) = 4.9¢% + D, Since 5(0) = 0, we
have s(f)=4.9¢*. Sloving s{t) = 10 gives

= 10 = _1"99 s0 the positive solution is ¢ = I_Q The
49 49 7

velocity at this time is v(%q) = 9.8(%1) = 14 m/sec.

(b) Again v(i) = 9.8t + C, but this ime v(() = -2 and so
W =98t-2 Thes’()=9.8t-2,50 () =

4.9t% -2t + D. Since s(0} = 0, we have s(f) =
4.9:% - 2¢, Sloving $() = 10 gives the positive solution

t= gm_%%/é = ].647 sec.

The velocity at this time is

v(gﬂg«[@_]ﬁ%[zﬁoﬁ
MUY

55 w]mzm 1042 msec or

9
about 14.142 m/sec.

45, Because the function is not continuous on [0, 1]. The
function does not satisfy the hypotheses of the Mean Valee
Theorern, and so it need not satisfy the conclusion of the
Mean Value Theorem.

46. Because the Mean Value Theorem applies to the function
y = sin x on any interval, and y = cos x is the derivative of
sin x. So, between any two zeros of sin x, its derivative,
cos x, must be zero at least once.

47, f{ x) must be zero at least once between o and b by the
Intermediate Valiie Theorem. Now suppose that f(x) is zero
twice between ¢ and b. Then by the Mean Value
Theorem, f'(x) would have to be zero at least once between
the two zeros of £(x), but this can’t be true since we are
given that f{x) « 0 on this interval. Therefore, f(x) is zero
once and only once between a and b.

48. Let f(x)=x* +3x+1. Then f(x} is continuous and
differentiable everywhere. f7(x) = 4x% +3, which is never
zeto between x = -2 and x=-1. Since f(~2) = 11 and
F (=1} =1, exercise 47 applies, and f(x) has exactly one
zero between x = -2 and x =-1.

49, Let f(x) =x+1n (x + 1} Then f(x) is continzous and

differentiable everywhere on [0, 3]. f'(x)=1+ _—I:i_—i , which
x

is never zero on [0, 3]. Now f () =0, sox=0is one
solution of the equation. If there were a second solution,
F(x) would be zero twice in [0, 31, and by the Mean Value
Theorem, f(x) would have to be zero somewhere between
the two zeros of f{x} .But this can’t happen, since f’(x) is
never zero on [0, 3]. Therefore, f{x) =0 has exactly one
solution in the interval {0, 3].



50. Consider the function k(x) = f(x) — g(x). k(x) is continuous
and differentiable on [a, ], and since
Ka) = fla}~gla) =0 and k(b) = f (b) ~ g(b) = 0, by the
Mean Vaiue Theorem, there must be a point ¢ in (g, )
where k’(c) = 0. But since k'(e) = f'{¢)~ g’{c), this means
that f'(¢)— g'(¢), and ¢ is a point where the graphs of f and
g have parzallel or identical tangent lines.

=
%W

(-1, Yby [-2, 2]

3

51. False. For example, the function x” is increasing on

(=1, 1), but £7(03 = 0.

52. True, In fact, fis the increasing on [a, &} by Corollary Lo the
Mean Value Theorem.
i

Emi. 3
53.A.f(x)='—£—=“j2m£.
3
N | o i)
54.B. f/(x) = =-i—2
_ 3.78-2980.96
T 4-0

= 744,30, negative slope.

558 L odr-10)
dx
_ 2 1
Wx Ax
56. D. x¥% is not differentiable at x = 0,

57. (a) Increasing: [-2, ~1.3} and [1.3, 2];
decreasing: [-1.3, 1.3} :
Iocal max: x~—1.3
local min: x =~ 1.3

(b) Regression equation: y = 351 -5

N I

e

[-2.5,2.5] by [-8, 10]

{¢) Since f’(x) = 3x* -5, we have f(x)=x° ~5x+C.
But £{0) =0, 5o C=0. Then f(x} =x° ~ 5x.
58. (a) Toward: 0 <r<2and S<t< 8 away: 2<t< 5§

(b) A local extremum in this problem is a time/place where
Priya changes the direction of her motion.
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{c) Regression equation:
y=-00820x% +0.9163x% - 2.5126x +3.3779

.

[~0.5, 8.5] by [~0.5, 5]

{d) Using the unrounded values from the regression
equation, we obtain
F(t)=—0.2459¢% +1.8324¢ ~ 25126, According to the
regression equation, Priya is moving toward the motion
detector when /(1 <0 (0 <r<1.8] and 5.64 <t <8),
and away from the detector when
6 =0(0181<r<564)

11
s, {O-F@ b a__ 1
b—a bq ab

, i 1 1 2
- HE e Q) e I e andc = b.
f (C (:2 C?, ab @

Thus, ¢ = \/a—b.

6. [B)-f@) b -
b-a b~a

=b+a

Fey=2¢, 50 2e=bta andcufm";l_b-.

61. By the Mean Value Theorem, sin b — stn a = (cos e} — a)
for some ¢ between g and b, Taking the absolute value of

both sides and using !cosc} < 1 gives the result,
62. Apply the Mean Value Theorem to fon [a, bl
Since f(b) < f(a), iﬁ%&m is negative, and
-a

hence f'(x) must be negative at some point between
aand b.

63. Let f( x) be 2 monotonic function defined on an interval D).
For any two vatues in D, we may let x be the smailer value
andletx be the larger value, 50 x, < x,. Then either

Flxp) < flxy) (f fls increasing), or f{x,) > f(x,) (f f is
decreasing), which means f(x,)# f(x,). Therefore, f is
one-to-one.

Section 4.3 Connecting f’ and f” with the
Graph of f (pp. 205-218)

Exploration 1 Finding f from £

1. Any function j(x) = x* —4x% + C where C is a real number.
For example, let C=0, 1, 2. Their graphs are gli vertical
shifts of each other.

2. Their behavior is the same as the behavior of the function
fof Example 8.



174 Section4.3

Explovation 2 Finding f from £ and £

1. fhas an absolute maximum atx = O and an absolute
minimum of 1 at x = 4. We are not given enough
information to determine f{0).

16, Left end behavior model: O
Right end behavior model: 375
Horizontal asymptotes: y =0, y =375

Section 4.3 Exercises

2. fhas a point of inflection at x = 2. 1Ly =2x-1
3.
. 1
Intervals X <= : X > -
/. TR
Sign of y - T+
[~3, 5] by [—5, 201 Behavior of y Decreasing Increasing
Cuick Review 4.3 Graphical support:
1. X -9<0 \ /
(x+x—~3D<0 '\%/
Intervals l x<-3 l 3<x<3 I J<x i L T
Sign of l ‘ [~4, 4] by [~3, 3]
+ - +
(x+3)(x-3) Local (and absolute) minimum at [1,—§]
Solution set: (-3, 3} 2 4
L — —
2, W de >0 2. Y =—6x"4+12x=~6x(x~2)
x{x+2x~2)>0 Intervals x<0 O<x<2 2<x
Intervals | x<=2 i 2<x<0 l O<x<2 I 2<x Sign of y - + -
Sign of Behavior of vy | Decreasing ¢ Increasing | Decreasing
(o 2~ 2) + - + .
* Graphical support:
Solution set: (~2, 0) U (2, ¢} ;
3. f: all reals \
£ all reals, since f'{x}=xe" +&* \L \
Ragirum
4. f: all reals #z V=%
[—4,41by -6, 6]
Fhx#0, since f'{x)= Ex“z"5 y
5 Local maximem: (2, 5);
5. fan2 local minimum: (0, -3}
-2 - (x)C - 3.y =8x" —8x =8x(x—1
71 2, since = EEDW=WO 2 ¥ =8 ~8x=8x(x=D (x+1)
(x-2) (x-2) Intervals x<=l ~lex<0 | O<x<l l<x
6. [ afl reals Sign of y' - + - +
. . . 2 s
fox#0, since f{x)=—x Behavior
5 ) Decreasing | Increasing § Decreasing | Increasing
7. Left end behavior model: G of y
nght end behavior model: w—x"‘ex Graphical Suppoﬂ::
Horizontal asympfote: y = 0
8. Left end behavior model: x%e* \ A }
Right end behavior model; 0 (YR RY,
Horizontal asymptote: y =0 i [

9, Left end behavior model: 0
Right end behavior model: 200
Horizontal asymptote: y — 0, y = 200

{—4,4) by [—3,3]
Local maximum: (0, 1);
local (and absolute) minima: (-1, -1) and {1, -1}

PN

PN



4y = xe (cx D) re = ei/x[l_lJ
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7. ¥ =12x2 +42x 436 =6{x+2) (2x+3)

x
Intervals x<0 O<x<l l<x
Signof v + - +
Behavior of y Increasing | Decreasing Increasing
Graphical support:
1 L:z.mzm

{8, 8] by [~6, 6]
Local minimum: (1, €)

1
5, ¥ = X st (=22 4 (8~ x7 (1) =
5 b4

g7

8-2x°
g x°

—

Intervals x <2 -2ex< _3 23 <x
2 2
Signof y' + - "
Behaviorof y | Increasing Decreasing Increasing
¥ =24x+42 = 6(dx+7)
7
Intervals xXL—— ~3 <x
Sign of ¥ - +
Behavior of y Concave down Concave up
Graphical support:
{

/

Intervals 8<x<-2 | 2<x<L | goxe B
Sign of ¥’ - + = BT leeewoas
Behavior of y Decreasing Increasing | Decreasing {4, 4] by [—80,20]
Graphical support: @ 7 o
T
7
(b) (W, mz}

[~3.02, 3.02] by [~6.5, 6.5)

Local maxima: (—J§ , Oy and (2, 4,
local minima: (-2, —4) and (v/8, 0)

8 v =-4x" +12x2 -4
Using grapher technigues, the zeros of y” are x = -0.53,
x = 0.65, and x ~ 2.88,

lnervals | £ <=053 | 053 <x <065 | 065<x<288 | 288 <y
Note that the local extrema at x =% 2 are also absolute 5 '
Sign of ¥ » - + e
extrema.
2 x<0 Behavior of y ing Dec: Increasing Decteasing
6» = ' ”
Y {Zx, x>0 ¥ = =125 + 240 = -12x(x - 2)
Intervals x<0 x>0 Intervals x<0 O<x<2 | 2<x
Sign of y + + Sign of y* - + -
Behavior of y Increasing Increasing Behavierof y | Concavedown ! Concaveup | Concave down
Graphical support: Graphical support:

A/

/

[—4, 4¥by [-3, 6]

Local minimum: (0, 1)

A

Heixirtim:

L R L

f—2, 4] by [—20, 20}
(a) (—eo, —~0.33] and [0.65, 2.88}

(h) {-0.53, 0.65] and [2.88, o}

{c} (0, 2)

(d) (—o=, 0) and (2, o0}
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8, Continued

(e} Local maxima: (~0.33, 2.45) and (2.88, 16.23); local
minimum: (0.65, -0.68)
Note that the local maximum at x = 2.88 is also an
absolute maximum.

(0, 1yand (2,9

2
9, v = wx“’ifj
Y75

Intervals

x<(

O<x

Sign of y

+

+

Behavior of y

= _8 s

25

Intervals

Increasing

x <

Increasing

O<x

(raphical support: (
e
k““b‘—‘—\-——

[-8, 8] by [0, 10}

Sign of y”

+

Behavior of y

Graphical support:

Concave up

I

(’_—z——""‘

[—6, 6] by [-1.5,7.5]

(a) (oo, =0}
(b) None
(€} (===, 0)
(d) (0, )
{e) None
(0, 3)

1
10, v = L yo203
YET3

Intervals

x<0

Concave down

O<x

Sign of ¥

Behavior of y

w_ 2 L503

9

Intervals

Decreasing

x<0

Decreasing

O<x

Sing of y*

+

Behavior of y

Congcave down

Concave up

(a) (0,20)
(b} (o, 0)
.12, x<l
1.y “{—2):, x>l
- Intervals x<li l<x
Signof y + -
Behavior of y Increasing Decreasing
10, x<1
r= -2, x>l
Intervals x<l l<x
Sing of y” 0 —
Behavior of y Linear Concave down
Graphical support:
\ N

\

{—2,3]by [-5, 3]
(a) None
(b} (1, =)
12, y = e”

y” e ex

Since v and y” are both positive on the entire domain, y is
increasing and concave up on the entire domain,

Graphical support:

[0, 24 by [0, 20]
{ay (0,2m)
(b) None

™,



13. y=xe*
y=e& +x
Intervals x<-1 x>~
Sign of y’ - -
Behavior of y Decreasing Increasing
¥’ =2e" +xe
Intervals x<~2 x>=2
Sign of y” - +
Behavior of y Concave down Concave up

[=-2)

W y= 59—z

2

Y =49-x? — 2 =0
g-x?
emt3V2
2
Intervals —3<x<~§£2- ~§—J—5—<x<§—@ Eﬁ@<x<3
2 2 2 2
Sign
of ¥ - + -
Be};fa\;or Decreasing Increasing Decreasing
" 3x % _
yo= “(gwxz)l.'z + (9 x2Y? =
=0  atx=0
Intervals -3<x<0 O0<x<3
Sign of ¥ + -
Behavior of y Concave up Concave down
1
18, y' =
Y P42
since y* > O for ali x, y is always increasing:
w_ 4 241 2\-2 X
¥= e (b ™Y = (B 7)Y (28] = e
dx (1+x2y?
‘ Intervals x<f O<x
Sign of y” + -
Behavior of v Concave up Concave down
0,0
16. y=x*(4-2x)
y =12x% - 4°
Intervals x<0 O<x<3 x>3
Sign of ¥ "+ + -
Behaviorof y | Inecreasing Increasing Decreasing
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v =24x-12x*

Intervals x<{ O<x<?2 x>2
Sign of y” - + -
, Concave Concave Concave
Behavior of ¥
down up down
{0,0) and (2,16)
17. y= 23 (x - 4) = 147 — 4x¥3
4 -
y=dy R - ke
3 3 3 x?..fs
Intervals x<{ O<x<l l<x
Sign of y’ - - +
Behavior of ¥ Decreasing Decreasing | Increasing
= 4w B s _dx+8
9 g 9 x5f3
Intervals X< ~2<x< Q<x
Sign of y” + - +
Behavior of y Concave Concave Concave
up down up

(=2, 6%2) = (-2,7.56) and (0, 0)
18. y=%"*(x+3)

2

i . . .
¥ = ~2"x V243422 yis always increasing, so there are

no critical points for ',

w1 x=3
= )1f2“4(x)3/2”“

{x
Intervais <x<l Cxx1
Sing of y” + -
Behavior of y Concave up Concave down
., 4)

19. We use a combination of analytic and grapher technigues to
solve this problem. Depending on the viewing window
chosen, graphs obtained using NDER may exhibit strange
behavior near x = 2 because, for example,

NDER (v, 2) = 1,000,000 while v is actually undefined at

225 v x-1

x=2.The graph of y = is shown below.

vV
|

[~47,4.7] by [-5, 15]
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19. Continned

(x-23x —dx+ D)= = 2% 4 x - D)
) (x=2?
__2x3—8x2+8x——1

RS

’

The graph of y* is shown below.

v
\

{~4,7, 4.7] by [—10, 10}

The zeros of ¥ are x = (.15, x =1.40, and x = 2.45.

Intervals | x<0.15 [015<x<1407140<x<2] 2<x<245 | 2d45<x

Sign - + - - +
of ¥

Behavior | Decreasing | Increasing | Decreasing I Decreasing | Increasing
of y '

(x=2P(6x% = 16x+8) - (2x° ~8x* +8x = D(2)(x - 2)
B -2

_(x=2)(6x% ~16x+8)~2(2x° - 81" +8x 1)

B (x-2)° '

2% ~12x7 ¥ 24x- 14

B (x~2°

_ 2Ax =D -5x47)

C x=2

The graph,of y" is shown below.

_

"

zare
i) Ve

{~4,7, 4.7 by [-10, 10

Note that the discriminant of x* —3x+7 is

(—5)2 ~ 4(D(Ty= -3, 50 the only solution of ¥’ =0 is x= 1,

Intervals <1 l<x<2 2<x
Sign of y” + - : +
, Concave Concave Concave
Behavior of v
up down up
(1, 1
, P EDM-x2%)  —x7 1
26. y'= 7,4 B
(x*+1) (x4
Intervals x<~1 -l<x<1 I<x
Sign of y’ - + -
Behavior of y Decreasing Increasing | Decreasing

= O+ )P (20) - (=2 + D+ D(2x)

2+t
(P D (20) —dxa(=x" + 1)
x*+1)°

20 e6x 2x(x*-3)
CE S VN C RV

Intervals x<~\/§ - 3<x<0‘0<x<x[5 \/5<x
S{gn - + - +
of y*
Behavior | Concave Concave
Concave up Concave up
of y down down

21, {a) Zero: x =1,
positive: (—ee, ~1) and (1, eo};
negative: (-1, 1)

(b} Zero: x=10;
positive: (0, c2);
negative: (—ee, 0)

22. {a) Zero: x = 0,  1.25,
positive: (125, 0) and (1.25, o),
negative: (e, -1.23) and (0, 1.25)

(b) Zero: x = £ 0.7;
positive: (—oo, —0.7) and (0.7, oo},
negative: (0.7, 0.7)

23. (a) (~e0, =2} and [0, 2]
(b) [2, 0] and [2, =)

(cy Local maxima: x = -2 and x = 2;
local minimum: x =0

24. (a) (-2, 2]
(b) (=0, ~2] and [2, =)

{¢) Local maximum: x = 2;
local minimum: x = -2

25. (a) W(H)y=x"(t)=2t—4
(b)) a(y=v()=2

(¢} It begins at position 3 moving in a negative direction. It
moves to position —1 when t= 2, and then changes
direction, moving in a positive direction thereafter.

26.(a) v = x" () =~2-21
b}y a®)=v()=-2

{¢) In begins at position 6 and moves in the negative
direction thereafter,

27.(a) v =X (D=3 ~3
(b) a(s)=v'(t)=6¢

S /"’_\\_



27, Continued

(¢) It begins at position 3 moving in a negative direction. it
moves to position 1 when r= 1, and then changes
direction, moving in a positive direction thereafter.

28. (a) v = x'(f) = 6t — 61%
) a@)=v'(t)=6~12¢

() It begins at position 0. It starts moving in the positive
direction until it reaches position 1 when £= 1, and then
it changes direction. It moves in the negative direction
thereafter.

29. {a) The velocity is zero when the tangent line is horizontal,
at approximately r = 2.2, = 6andt =9.8.

(b} The acceleration is zero at the inflection points,
approximately r=4, r=8and r=11. .

30. (a) The velocity is zero when the tangent line is horizontal,
at approximately ¢ = -0.2, r=4,andr =12,

(b) The acceleration is zero at the inflection points,
approximately £ =1.5, 1 =5.2, t=8, t=11,and¢ =13.
31. Some calculators use different logistic regression equations,

SO answers may vary.

@ y= 12655.179
1+12.871g7003260

(b)

[0, 2401 by [-200, 12000]

12655.179
€} y=

- 14 12.87 1700326180}
remarkably close to the 2000 census number of
12,281,054.)

() The second derivative has a zero at about 78, indicating
that the population was growing fastest in 1898. This
corresponds to the inflection point on the regression
curve.

=12,200,870. (This is

{e) The regression equation predicts a population Hmit of
about 12,655,179,

32. Some calculators use different logistic regression equations,
50 answers may vary.
28984386288

fa) y=——————
1+49.252¢ 70851

(b)

0, 9 by [-3.1 X165, 32 107
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(¢) The zero of the second derivative is about 4.6, which
puts the fastest growth during 1981. This corresponds to
the inflection point on the regression curve.

(d) The regression curve predicts that cable subscribers will
approach a Hmit of 28,984,386 + 12,168,450 subscribers
(about 41 million).

33, y=3x-x>+5
¥ =3-3x°
y” = ___6x
¥y =0attl.
¥(=1)> Gand y"(1) <0, so there is a local minimum at
(-1, 3) and a focal maximum at (1,7).
M. y=13" - 80x+100
¥ =5x* ~80
y-’f = 20x3
y=0ar2
¥7(-2y < 0 and y"{2) > 0, so there is a local maximum at
(=2, 228) and a Jocal minimum at (2, ~28).

35, ye=x 4350 -2
¥ =3x2 +6x
Y =6x+6
¥ =0ua —2and 0.
y(=2) <0, y"(0) >0,
so there is a local maximum at (-2, 2) and a local minimum
at (0, ~2),
36. y =327 252 +60x+20
v =15x* —752% + 60
y"= 60x" ~150x
y=0at+landt2.
Y (=2)<0,y"(-1)>0
¥y (<0, and y*(2) > O;
$o there are local maxima at (-2, 4) and (1, 58), and there
are focal minima at (1, -18) and (2, 306).

3. y=xe'
¥ =(x+De*
¥ = (x+2)e*
y=0at -1
y” €~1)> 0, so there is a local minimum at(—1,~1/¢).
38, y=uaxe
¥y =(-x)"
y=(x—2e™"
y=0a1

¥ {1} < 0, so there is a local maximum at (1, He).

39, y = (x-D%x-2)

Intervals x<l T<x<2 Z<x
Sign of ¥’ - - +
Behavior of y | Decreasing | Decreasing Increasing
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39, Continued

Y = @ -DHO+ -2 (23 x~ 1)
= (x— P - D+ 2(x = 2)]

=(x-1(3x-35)
Intervals x<1 l<x < 3 3 <X
3 3
Sign of y” + - +
. Concave Concave Concave
Behavior of y
up down up

(a) There are no local maxima.

(b) There is a local {and absolute) minimum at x=2.

(¢} There are points of inflection at x= 1 and at x = %

46. v =(x-1) (x-2x~4)

Intezvals x<i l<x<2 Zax<4 4<x
Sign of ¥’ + + - +
Behavior . . . .
£y Increasing | Increasing | Decreasing | Increasing
o

Y= %{(xnn%xz ~6x+8)

= (X~ D (2x = 6)+ (x? —6x+8)(2) (x~ 1)
= (x = D[(x ~ 1 2x ~ 6) + 2(x* — 6x +8)]
= (x- 1 {4x% - 20x+22)
= 2x-1){2x% ~10x+11)
Note that the zeros of y” are x = 1 and

10107 41D _ 102412
4 4
543

- = 1.630r 3.37,
2

The zeros of y” can also be found graphically, as shown.

i

Y

ieLamirn_vso
[—3,71by [-8,4]

Intervals x<l1 l<x<1.63 | 1.63<x<337 | 337<x
Sign
of " - + - +
Behavior | Concave Concave
Concaveup | Concave down
of y down up

(a) Local maximunt at x =2
(b} Local minimum at x =4

(c) Points of inflection at x = I, atx =~ 1.63, and at x = 3.37.

41. ¥
y=f1{x)

y = flx)

y=fx
42. Y
Ey=fn
0 ” . X

43, No f must have 2 horizontal tangent at that point, but f could
be increasing (or decreasing), and there would be no local
extremum. For example, if f(x)=x3, f(0)=0 but there is
no local extremum atx = Q.

44, No. £“(x) could still be positive (or negative) on both sides
of x = ¢, in which case the concavity of the function would
not change at x = ¢. For example, if f{x)}=x*%, then
F0) =10, but fhas no inflection point at x = 0.

45, One possible answer:

¥

| O VS |

~ X
-5}
46. One possible answer:
¥
5%
Mn E TR SN T | ux_a t|§_’x
5t

T
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47. One possible answer; {¢) One possible answer:
y ¥
(-2,8) 10} 2
(0,4 y w flx)
1 | o, V0 T S x + L ) ™ J k > X
-5 - {2’ 0) 5 mﬁ\/ \//i
. -ir
~15t -2}
48. One possible answer:‘ {d) Since fis even, we know f(3) = f(~3} By the continuity
¥ of f, since f{x)} <0 when2<x<x< 3, we know
8 (6,7 that f(3) <0, and since f(2)=-1and F(x) >0
6 when 2 < x <3, we know that f(3) >~1. In summary, we
4 know that f(3} = f(-3),~1< f(B <G,
and~i< f(-3£0.
2
53. ¥
;) 41
]

49, {a) [0, 1], [3, 4], and [5.5, 6]
(b) [1, 3] and [4, 5.5]

(¢) Local maxima: x=1, x=4

X
(if fis continuous at x = 4), and x = 6;
local minima: x= 0, x=3, and x= 5.5
50. ¥f fis continuous on the interval [0, 31; 54. 5”
@10,3] 2k
(b) Nowhere 3t
{c) Local maximum: x=3; 2f
local minimum: x =0 4 . Ly
51. (a) Absolute maximum at (1, 2); b 23
absolute minimum at (3, -2) . - o .
(b} None -3
(e} One possible answer: . s
y 55. False. For example, consider f(x)=x* atc=0.
2F y=f) 56, True. This is the Second Derivative Test for a local
maximum.
1 -
57.A. y=ax’ +3x" =4x+5 saya=-2
i 2 :I), * ¥ = % +6x 4 4
¥y =-12x+6
1k 1
¥=0a~
2L 2
Interval <1/2 =172
$2. (a) Absolute maximum at (0, 2); e * i
absolute minimum at (2, ~1) and (-2, ~1) Sign of y” + -
(b} At (1, ©) and (-1, 0) Behavior of y Concave up Concave down

58.E.
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59.C. y=x"—5x* +3x+7
y =5x* - 20x° +3
¥ =20x" - 60x

y'=0at3
Interval x<3 x>3
Sign of ¥ - 4+
Behavior of y Concave down Concave up
3 is an inflection point.
60. A,
. b T
61. (a) In exercise 13, a=4 and b=121, s0 —5— = L which is
a

the x-value where the point of inflection occars. The

local extrema are at x = -2 and x = w%, which are
. 7
symmetric about x = s

(b) In exercise 8, a= -2 and b = 6, SOW??— =1, whichis
a

the x-value where the point of inflection occurs. The
local extrema are at x = ( abd x = 2, which are

symmetric about x = 1.

(©) F/(x)=3ax*+2bx+c and
F(xy=6ax+2b.
The point of inflection will occur where

b
#(x) =, which is at x = ——,
Frx) ™

If there are local extrema, they will occur at the zeros
of f’(x). Since f'(x) is quadratic, its graph is a parabola
and any zeros will be symmetric about the vertex which
will also be where F*(x}=0. ’

(14 ae™ }(0) - (¢) (—abe ™)
i+ ae™t® )2

_ abee™ ™

- (1+ae™)?
abce™ ™

N ™ +ay’
so the sign of f'(x) is the same as the sign of abc.

62.(a) f(x)=

(& +a)*(ab ce™ )~ (aboe®™ )2(e® + a)(be™)
( ebx + 4)4

(™ +a)(ab®ce™)~ (abce™ ) (2be™)

- ™ +a)

o abce™ (™ — a)

(" +ay

(®) f7(x)=

Since ¢ > 0, this changes sign when x = —h-ll-bfi due to the

&% — g factor in the numerator, and f(x) has a point of
inflection at the location.

63.(a) f'(x)=4ax® +3bx* +2cx+d
Frix)=12ax? +6bx +2¢
Since is £”(x) quadratic, it must have 0, 1, or 2 zeros. If
£ €x) has Q or | zeros, it will not change sign and the
concavity of f {x) will not change, so there is no point
of inflection, If £”(x) has 2 zeros, it will change sign
twice, and f(x) will have 2 points of inflection.

(b) If £ has no points of inflection, then f*(x) has 0 or
1 zeros, so the discriminant of f”(x) is £ 0. This gives
{6h)* —4(12a){2c) £ 0, or 3b? < 8ac. If fhas 2 points of
inflection, then £”(x) has 2 zeros and the inequality is
reversed, so 352 > 8ac. In summary, fhas 2 points of
inflection if and only if 35 > 8ac.

Quick Quiz Sections 4.1-4.3

1L.(C) f(x)=5x—-2(x+3)* +4(x -2 (x+3* =0

7
x=-3,~-=,2
9

2.0) £/(x)={x-3) +2(x-2)(x~3)=0
FD)=(x-3X3x-T)=0

5
=3

*=3

3.(B) x*-9=0
x=%3

d
4.(a) —3ln(x*+2)-2
()dx (x*+2)-2x

2x

=3——-2=0
x°+2
x=1,2
Intervals 2<x<l 1<x<2 2<x<4
Sign of y . - + -
Beha\;or of Decreasing Increasing Decreasing

fhas relative minima at x =1 and x = 4 fhas relative
maxima at x = 2

” d{ 6x
o f (x)mzx_«(f”mz}
6 12x"
2 +2 x2+2)?

Frx)=
x=12
[has points of inflection at x = +J2

(¢} The absolute maxirawsn is
atx=—2and f(x)=3In6+4.

TN



Section 4.4 Modeling and Optimization
(pp. 219-232)

Exploration 7 Constructing Cones

1. The circurnference of the base of the cone is the
circumference of the circle of radius 4 minus x, or 87— x.

8i—x

Thus, =

and the fomula for the volume of a cone to find V.

2. The expression under the radical must be nonnegative, that

8r—x >
is,IG—[m———] >0,
2r

Solving this inequality for x gives: 0 < x <167,

0

[0, 162} by [~ 10, 401

3. The circumference of the original circle of radius 4 is & 7.
Thus, 0 <x <8xm.

AN

£0, 8] by [~ 10, 40

4, The maximum occurs at about x = 4.61. The maximum

volume is about V = 25.80.
5, Start with -Ei"-‘-/-“ :gﬁrhﬂ"{.frz gilw
de 3 dx 3 dx

Compute ar and ﬁ,substitute these values in
dx dx

ﬂ, set -‘ﬂ/ = 0, and solve for x to obtain
dx dx

?fé__;fiﬁ

Then V

_ 12873 _ 2580,
27

Quick Review 4.4

Ly =3x" ~12x+12=3(x ~2)?
Since y' 20 forallx (and y" > 0 forx # 2), y is increasing

on (—oo,w) and there are no local extrema.

2.y =657 +6x—12=6(x+2x—1)
Y =12x+6
The critical points occur at x=~2 orx =1, since y =0 at
these points. Since y”(~2) = —18 < (), the graph has a local
maximum at x = 2. Since y"(1}) =18 > 0, the graph has a

. Use the Pythagorean Theorem to find ,

10.

V=—arth= é?r(ﬁ)z 8)=

Section4.4 183

local minirum at x = 1. In summary, there is a iocal
maximum at (-2, 17) and a local minimum at (1, ~10).

1 2007 5
cm

3

V =7rth = 1000
SA = 2mrh + 21 = 600

Solving the volume equation for k gives = &%9
nr

Substituting into the surface area equation gives
2000

T2 4 2 = 600, Solving graphically, we have
: ¥

r=-11.14,r =401, orr=7.13. Discarding the negative

000
2

) 1
value and using A=
r

of h, the two possibilities for the dimensions of the
cylinder are:

r=4.01 cmand h=19.82cm, or,

r=T13cmand h=626cm.

to find the corresponding values

. Since y = sinx is an odd function, sin (~a)= ~sin .

. Since y=cosx is an even fanction, cos (—&) = cos o

sin(7 — o) = Sin T COS & — COS SN X
=0coso —{(-1)sinex

=sing

COS{T — ¢} = COS 7L COS X — SN TSN

= (~Dcoso+Osine
= —COSEL

5 xz-i»yzxélandy:\[gx
224 (32 =4
22 +3x2=4
dx* =4
x= il

Since y= J3x, the solution are:
x=1and y--\/g, or, x=-1 andy=—\/§.
In ordered pair notation, the solutions are

(1,/3) and (-1, ~3).

2 2
Y ctandy=x+3
49
2 2
A )
49

0x® +4(x+3)* = 36

9x% +4x% +24x+36 = 36
1357+ 24x =0
x(13x+24)=0

24
={ B e e
X OrXx 13
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10, Continued

Since y= x-+3, the solutions are:
15

24
=0 and y=3, ot, x =—~—and y-—,
x ! IR

In ordered pair notation, the solution are (0, 3) and
I
13713 )
Section 4.4 Exercises
1. Represent the numbers by x and 20~ x, where 0 < x £ 20

(a) The sum of the squares is given by
Fx)y= x2 +(20 - x)* = 2x* — 40x + 400. Then
f{x)y=4x—40. The critical point and endpoints occur
at x=90,x=10, and x= 20, Then f (0) = 400, f (10) =
200, and £ (20) = 400. The sum of the squares is as large

s possible for the nambers 0 and 20, and is as small as
possible for the numbers 10 and 10.

Craphical support:

N

e Y2200 e
{0, 201 by [0, 4507
(b} The sum of one number plus the square root of the other

is given by g(x) = x+~20—x. Then
1
2§20 x

gixy=1- . The critical point occurs when

2N20-x=1, 5020 - x= i andxm—%g-. Testing the
endpoints and critical point, we find g(0) = 20 =
4,47, g(?zg—)= %—1-= 20.23, and g(20) = 20. The sum is

as large as possible when the numbers are
79 1

791 .
= and — | summing—~- [~ |, and is as smalf as
4 4 4 4

possible when the numbess are ( and 20
(summing 0 + \/56 ).

Graphical support:

/

Haximum
g=£9.7% ¥220.28

10, 20] by [—10, 25]

2, Let x and y represent the legs of the triangle, and note that
O<x<5 Then x2+y*= 25, s0 y=v25-x>

(since y > 0), The area is A#—;—xyméx\/%——xz,

sogézixm ! (—2x)+-1—\125—x2
de 2 9\ n5_ 42 2
25-2x"

Ny

The critical point occurs when 25— 2x? =0, which means

x= —% (since x > 0). This value corresponds to the largest

possible area, since @ >0 for0<x< =N and < a4 <0
dx J2 dx

for—én<x <5, When x:w?m, we have
2

V2
P 2
5 5 1 I 5 25
y=,125—] ~ | =-%= and Ammxym~(—-—) =2
(JE] 2 27 2\ 4
Thus, the largest possible area is %:chmz, and the

5 ]
dimensions (legs) are —=cm by —=cm.
2 V2

Graphical support:

Haximum
KeyE358339 Yehas

{0,51by [~2,7]

3. Let x represent the length of the rectangle in inches (x > 0).

Then the width is 16 and the perimeter is
X

P(x}= 2[)6 + }E) = 2x+£.
X X
2x* —16)

x2

oceurs at x =4, Since P'(x)<0for0<x <4 and
P’{x}> 0 for x > 4, this critical point corresponds to the
minimuam perimeter. The smallest possible perimeter is
P(4) =16 in., and the rectangle’s dimensions are 4 in.
by 4 in.

Graphical support:

Since P'(x)=2-32x"" = this criticai point

[0, 207 by {0, 40
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4. Let x represent the length of the rectangle in meters Graphical support:
(0 <x <4). Then the width is 4 — x and the area is e
A(x) = x(d=-x)=4x~x2, Since A(x) =4~ 2x, the critical
point occurs at x = 2. Since ANx) >0 forO<x <2
and A’(x) < 0 for 2 < x < 4, this critical point corresponds
Lo the maximum area. The rectangle with the largest area Hegiours o
measures 2 m by 4 — 2 = 2m, so it is a square.

[0, V121 by [ 10, 40]

Graphical « t:
rapilcal suppor 7. Let x be the side length of the cut-out sguare (0 <x < 4).

Then the base measures & — 2x in. by 15 — 2x in., and the
volume is

Vix)= (8~ 2x3(15~2x) = dx% ~46x% +120x. Then
fogmue V() =12x% —92x +120 = 4(3x — 5)(x — 6).
[0, 4] by [—1.5, 5]

‘Then the critical point in 0 <x <4 occurs at x = g Since
5. (a) The equation of line AB is y=—x+1, so the 3

y-coordinate of Pis—x + 1, Vi(x)>0for0<x <~§« and V'(x) <0 for % <x <4,
(b} A(x}=2x(i—x) the critical peiat corresponds fo the maximum volume.
. . d 2 . . . . . 5) 2450 .3
(c) Since A'(x)= E;(Zx —~2x%)=2~4x, the critical point The maximum volume is V 3 = = =90.74in”, and the

] . .
oceurs at x = 5 Since A'(x) »0forQ <y« :;” and dimensions are 5 in. by 1 in. by E2) in.
3 3 3

A’(x) <0for — < x< 1, this critical point corresponds Graphical support:

to the maximum area. The largest possible area is

A(—;—} = —;— square unit, and the dimensions of the

RaXihupy
a&l BANGEET TEBG.PUGIHL

[0, 4] by [—25, 100}

1 . .
rectangle are 5 unit by 1 unit.

Graphicai support: 8. Note that the values o and b must satisfy a° +b” = 20% and

50 b=+400—a?, Then the arca is given by

A:%ab:%a 400~ a* for0 < a <20, and

AEIHERY
g~.§ V=8 ﬁmla m____%_______ (~2a)+—1-~’400~a2
10, 11 by [-0.5, 1] da 2"\ 24fa00- o? 2
6. If the upper right vertex of the rectangle is located at - @* + (400~ a?) 200 a?

. The critical point occurs

2 " : N =
G, 12-x)for0<x < \/1—2, then the rectangle’s 2\/4()() — 2 \/400 —
dimensions are 2x by 12— x? and the area is
A (%)= 2% (12 = x? ) = 24x — 2x°. Then

Al(x) =24~ 6:15 % = 6(4 - 1), so the critical point «Z? <0 for v200 < & < 20, this critical point corresponds o
(ford<x< JEE ) occurs at x = 2. Since “

) the maximum area. Furthermore, if a=+200 then
A(x)> 0 for0<x <2 and A'(x) <0 for 2 < x <+/12, this S o 555
critical point corresponds to the maximum area. The largest b =V400~a" =200, so the maximum area occurs when

possible area is A{2) =32, and the dimensions are a=b.
4 by 8.

when a” = 200. Since 3{5 >0 for0<a<+200 and
7]
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8. Continued

Graphical support:

Haxim
Sinthoiae y=100

10, 20] by [—30, 110}

9, Let x be the length in meters of each side that adjoins the
tiver. Then the side parallel to the river measures 800 — 2x
meters and the area is

Alx) = x(800 — 2x) = 800x — 2x” for 0 < x < 400.
Therefore, A’(x)= 800—4x and the critical point occurs at
x 2200, Since A'(x) > 0 for 0 < x < 200 and

A’(x) <0 for 200 < x <400, the critical point corresponds
to the maximum area. The largest possible area is

A(200) = 80,000 m? and the dimensions are 200 m
(perpendicular to the river) by 400 m (paraliel to the river).

Graphical support:
D™ yuogon

[0, 4003 by [—25,000, 90,000]

10. If the subdividing fence measures x meters, then the pea

patch measures x m by 216 m and the amount of fence
. X

needed is f(x)=3x+ 2-2-1-6- =3x +432x". Then
x

fxy=3~ 432x™% and the critical point (for x > 0) occurs
atx:=12. Since f(x)<0for0<x<12 and
F{xy>0 forx > 12, the critical point corresponds to the

minimum total length of fence. The pea patch will measure
12 m by 18 m (with a 12-m divider), and the total amount
of fence needed is f(12)=72m.

Graphical support:

Minisaurs

LS P, L &y

{0, 401 by 0, 250}

11. (a) Let x be the length in feet of each side of the square

base. Then the height is §9£0_ ft and the surface area (not
x

inchading the open top) is

S(x)y=x2+ 4;{5929) = x? +2000x7". Therefore,
X
2(x” - 1000)
2

point oceurs at x = 1. Since §(x)<0for0<x <10
and 8'(x)}> 0 forx > 10, the critical point corresponds
to the minimum amount of steel used. The dimensions
shouid be 10 ft by 10 ft by 5 fi, where the height is 5 ft.

(b) Assume that the weight is minimized when the total
area of the bottom and the four sides is minimized.

§'x)=2x—2000x7% = and the criticat

12. (a) Note that x°y=1125,50y = 13»? Then
X

¢ = 5(x% +4xy) +10xy
= 5x% 430y

=5x2 +30x(ﬂ%~5~)

X
= 5x% +33,750x~

100 -3375)

2

de -2
—=10x-33,750x"" =
dx * g x

The critical point cccurs at x = }5. Since % <0 for

O<x<15and gxc—>0 for x > 15, the critical point

corresponds to the minimum cost. The values of x and y
arex=15ftandy=5ft.

{b) The material for the tank costs 5 dolars/sq ft and the
excavation charge is 10 dolars for each square foot of
the cross-sectional area of one wall of the hole.

" 13. Let x be the height in inches of the printed area. Then the

width of the printed area is 0 in. and the overall
X
. . . 50 .
dimensions are x + 8 in. by =+ 4 in. The amount of paper
x

used is A(x)= (x+8)(»5~9+4)z ax+82+ 390 2 Then
X X

2 pa—
A(x)=4—400x% = f(_x___;_gg)" and the critical point
x

{for x> 0) occurs at x = 10, Since A'{(x)<0for 0<x <10
and A’(x) > 0 for x > 10, the critical point corresponds to

the ruinimum amount of paper. Using x + 8 and §9~+ 4 for
x
x= 10, the overall dimensions are 18 in. high by 9 in. wide.
14. (8) s(t)=—16:" +96¢+112

V()= 5'() = -32r + 96
At =10, the velocity is w0) = 96 ft/sec.
(b} The maximum height cccurs when w(?) = 0, when =3,

The maximum height is (3) = 236 ft and it occurs at
t=3 sec.

(



14. Continued

(c) Note that s(r) =—16¢ +96t+112= =160+ Dt -7,
so s=0att=-I ort= 7. Choosing the positive value,
of £, the velocity when s =0 is w(7) = —128 {t/sec.

15. We assuﬁle that a and b are held constant. Then
A= »liab sin@and A7(H) = %ab cos 8. The critical point
(for0<@<m)occas at @ = % Since A (8 >0

for()<@<—;E and A"(8) O for —;E<9<f€,
the critical point corresponds to the maximum area. The

angle that maximizes the triangle’s area is €= —g—( or 90°).

16. Let the can have radius » cmn and height A cm. Then

arth=1000,30 h= ig%q The area of material used is
rr
A=nrt +2mrh=nrt + 2—0—9—0, 50 -Z—é = Q7rr — 200072
r r

_ 2mr® = 2000

?‘2

r= 3/5299 =107 cm. Since a4 <0
T df"

for 0 < r <1077 and %’ho forr > 107
T

. The critical point occurs at

”3, the critical

point corresponds 1o the least amount of material used and
hence the lightest possible can. The dimensions are
r=102""? = 6.83cm and h = 107" ~ 6.83cm. In Example
2, because of the top of the can, the “best” design is less big
around and taller.

1000
nr’

A=8r2+27crh:8r2+@9—q, 50
-

Then

17. Note that 7r2h = 1000, 50 A=

3 —_—
gﬂ =167~ 200057 = 2O ~129) —129)

¥ r

. The eritical point

oceurs at r=%125=5cm Since %ﬂ <0 forO<r<5and
s

& >{ for r > 5, the critical point corresponds to the least
amount of aluminium vsed or wasted and hence the most

40

economical can. The dimensions are r= 5 cm and b=,
n

. , 8
sotheraticof htoris — to L.
2
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18, (a) The base measures 10 ~ 2x in. by ad in, s0 the

volume formula is
Viry= x(10— 2x2)(15 —-2x)

(b) We require x > 0, 2x < 10, and 2x < 15, Combining
these requirements, the domain is the interval (G, 5).

=72x° - 25x% + 75z,

{0, 5] by [~20, 80]

{c)g

Haxim, N
BEThilrae yeps.oaoatn

{0. 51 by {20, 80}
The maximum volume is approximately 66.02
when x = 1.96 in.

(@) V/(x)y=6x%-50x+75
The critical point occurs when V'(x) =0, at

v 50+ \/(w««SE}}2 — &(6X75) _ 50700 - 254547
A 12 6
that is, x = 1.96 or x = 6.37. We discard the larger valuie
because it is rot in the domain. Since V"(x) = 12x - 50,
which is negative when x = 1.96, the critical point
corresponds to the maximum volume. The maximum

25-5\7
6

>

volume oceurs when x = =196, which

confirms the result in {¢).

19. (a) The “sides” of the suitcase will measure 24 — 2x in. by
18 —2x in. and will be 2x in. apart, so the volume
formula is
V(x)=2x(24 ~2xX18 - 2x) = 8x° —168x> + 864 x.

(b) We require x >0, 2x <18, and 2x < 24. Combining
these requirements, the domain is the interval (0, 9).

£0, 9] by [-400, 1600]
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19. Continued
(c}]

M xitaurs
FEETENNr vzimnmseer

{0, 9] by [—400, 1600]

The maximum volurme is approximately 130895
when x = 3.39 in.

(d) V()= 24x° ~336x + 864 = 24(x” - 14x + 36)
The critical point is at

\/—__2;'——“
Lo dENES 4(1}(36}=14i2‘/§§m7i 13, that

241

is, x =3.39 or x = 10.61. We discard the larger value
because it is not in the domain. Since V(x) =
24(2x ~14), which is negative when x = 3.39, the critical
point corresponds to the maximura volume. The
maximum value ocours at x =7~ \/1—5 =3.39, which
confirms the results in (c).
() 8x3 ~168x2 +864x=1120
B(x3—21x2 +108x~140) =0
Blx=2)(x~3){x—~14)=0
Since i4 is not in the demain, the possible values of
xarex=2in orx=351in,
(f) The dimensions of the resulting box are 2x in.,
(24 - 2x) in., and (18 - 2x) in. Bach of these
measirements must be positive, so that gives the
domain of (0, 9
26.

%~ 6-x { Village

—d T

S

2 4 + x* miies

I
Jane
Let x be the distance from the point on the shoreline nearest

Jane’s boat to the point where she lands her boat. Then she

needs to row v4-+x* miat 2 mph and walk 6 —x mi at
5 mph. The total amount of time to reach the village is

Nd+x2 6-x
3

flx)= 5 + hours (0 £x<6 ). Then
1 1 1 x i
Fx)y= m—mm (2) = £ = e —
2oya+x? Wat s 3
Solving f/(x) =0, we have:
I
Wa+xt D

Sx e 2\}4+x2
25x° = 4(4+ x%)
21x? = 16

We discard the negative value of x because it is not in the
domain. Checking the endpoints and critical point, we have

fO)= 2-243{%)% 2.12, and f(6)=~3.16. Jane should

land her boat mfxm{)ﬁ’] miiles down the shoreline from
21

the point nearest her boat.

21. If the upper right vertex of the rectangle is located at

(x, 4 cos 0.5x) for 0 < x <7, then the rectangle has width
2x and height 4 cos 0.5x, so the area is A(x) = 8x cos 0.5x.
Then A'(x) = 8 x(~0.5 sin 0.5x) + 8(cos 0.5x)(1)

=—d4x sin {.5x + § cos 0.5x.
Solving A'(x) graphically for 0 < x <, we find that
x=1.72. Bvaluating 2x and 4 cos (.3x for x =~ 1.72, the
dimensions of the rectangle are approximately 3.44 (width)

by 2,61 (height), 2nd the maximum area is approximately
8.98.

22, Let the radius of the cylinder be r cm, 0 < r < 10. Then the

heightis 24100~ r® and the volume is

Vi) =277 100 = 2 om®. Then

1
V(r) = 2mr’ [www}(mzr) +(27N100- 72 )(2r)
24100~ 12
27+ dmr(100- 1)
V160 72
_ 27r(200-3r%) . (

V100 - 4

The critical poiat for 0 < r < 10 occurs at

yo= f-%%g:l{)\/g. Since V'(ry >0 for {}<;-<10\[§ and
2

V) »0for lﬁ\g < r <10, the critical point corresponds

te the maximum volume. The dimensions are
Foa= 10\/% =816 cmand A= EQ_ ~11.35 cm, and the

3
volume is 40007 241840 cm®.
33

23, Set r'(x) = c’{x}:4x"1" % = 4x. The only positive critical

value is x = 1, so profit is maximized at a production level

of 1000 units. Note that (r—c)"(x) = ~2(x) ¥ -4 <0 for
all positive x, so the Second Derivative Test confirms the
Maximum.

24. 8et r'(x)=c’(x):2x/ (x?+1)t = (x —1)%. We solve this

equation grpahicaily to find that x =~ (.294. The graph of

y = {x) - ¢(x) shows a minimum at x =~0.294 and a

maximum at x = 1.523, so profit is maximized a: a

production level of about 1,525 units. _ (



