Free Body Diagrams: Use the forces in the box below and label each on your Free Body Diagram (FBD).

Contact Forces	Field Forces
Applied Force = F_{App}	Gravitational Force = F _G
Normal Force = F_N	Electromagnetic Force = F_E
Friction Force = F_f	
Tension Force = F_T	
Spring Force = F_S	

Use your gold sheet and the Rules for Drawing Free Body Diagrams (FBD) to complete the below practice problems. Problems #1 and #2 are completed as examples.

1) A book is at rest on a tabletop.		
<u>Picture</u>	<u>Identify Forces</u>	<u>FBD</u>
		F _N

2) A girl is suspended motionless from the ceiling by two ropes.		
<u>Picture</u>	<u>Identify Forces</u>	<u>FBD</u> F _T F _T
		<u> </u>

	-	
Picture	Identify Forces	FBD F _T F _T
		F _G

3) An egg free-falling from a nest in a tree.			
<u>Picture</u>	<u>Identify Forces</u>	<u>FBD</u>	

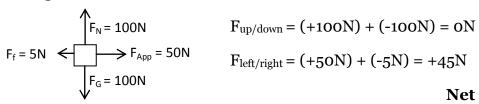
4) You are on a bike that is coasting to the right and slowing down.		
Picture	Identify Forces	<u>FBD</u>

5)	A rightward force is applied to a book in
	order to move it across a desk. The desk
	is not frictionless.

<u>Picture</u>	Identify Forces	<u>FBD</u>
<u>1 teture</u>	racintity 1 orects	<u>155</u>

6) A college student rests a backpack upon his shoulder. The pack is suspended motionless by one strap from one of his shoulders.

<u>Picture</u>	<u>Identify Forces</u>	<u>FBD</u>

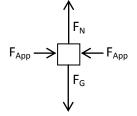

7) A force is applied to the right to drag a sled across loosely packed snow.

<u>Picture</u>	<u>Identify Forces</u>	<u>FBD</u>

8) You are on a bike that is coasting to the ri

Determine the Net Force on the object in each situation below. You must draw a FBD and label the force vectors with the size of the force. **Problem #1 is completed as an example.**

1) You push a 100N box across the floor with a 50N force. The force of friction is 5N.



$$F_{up/down} = (+100N) + (-100N) = 0N$$

$$F_{\text{left/right}} = (+50N) + (-5N) = +45N$$

Net Force: +45N or 45N to the right

2) Anthony pushes on James from the right with a 75N force while Mr. Selent pushes on James from the left with a 75N force. James weighs 350N.

Net Force:

3) This time Anthony pushes on James from the right with a 100N force while Mr. Selent pushes on James from the left with a 75N force. James weighs 350N.

Net Force:

4) An egg is free-falling from nest. The egg weighs 10N and the force of air friction is 1N.

Net Force:

5) After giving a 35N box a shove (you are no longer applying a force to the box) and it slides across the floor slowing down. The force of friction on the box is 2N.

Net Force:

6) A college student rests a 12N backpack upon his shoulder.

Net Force:

7) You push a 1250N refrigerator with a 250N force but the box *does not move*.

Net Force: