Predicting Products of Chemical Reactions

This worksheet is designed to help you predict products of simple reactions of the four basic reaction types (synthesis, decomposition, single replacement, and double replacement) and combustion reactions.

For the first few reactions, the type of reaction is listed, you should predict the products, then balance. Further questions just have the reactants listed and you should decide on the type of reaction, as well as the correct products. Many of these reactions fall into the category of redox reactions, though do not let that confuse you...each can be described in terms of the four basic reaction types (except the combustion reactions).

Although states (s, l, g, aq) of the reactants and products are very important in a chemical reaction, don't worry about determining those for these problems. Rather, focus on what products might result from the reactants given. Pay particular attention to the ionic charge of species that you know form ions with only one possible charge (e.g., alkali metals, alkaline earth metals, halogens, etc.)

a. Combustion:	$C_{6}H_{12}$		+	O_2	\rightarrow	
b. Combustion:	C_4H_6		+	O ₂	\rightarrow	
c. Combustion:	C ₆ H ₁₀ O	3	+	O_2	\rightarrow	
1. Synthesis:		Mg	+	I_2	\rightarrow	
2. Double displacement:		CuCl ₂	+	H_2S	\rightarrow	
3. Double displacement:		NaOH	+	HClO ₄	\rightarrow	
4. Decomposition:		ZnCO ₃	+	heat	\rightarrow	
5. Single replacement:		HCl	+	Zn	\rightarrow	
6		Na	+	MgCl ₂	\rightarrow	
7		CaCl ₂	+	K ₂ CO ₃	\rightarrow	
8		K	+	Cl_2	\rightarrow	
9		BaCl ₂	+	K ₃ PO ₄	\rightarrow	
10		H_2SO_4	+	КОН	\rightarrow	
11		Al ₂ (CO	3)3	+	heat	\rightarrow
12		Al	+	O_2	\rightarrow	
13		Pb(NO ₃	$)_2$	+	КОН	\rightarrow
14		H_2SO_4	+	BaCl ₂	\rightarrow	
15		Ca	+	AgCl	\rightarrow	
16		H ₃ PO ₄	+	FeBr ₃	\rightarrow	
17		Li	+	N_2	\rightarrow	
18		HCl	+	Mg(OH)2	\rightarrow
19		Mg(OH)2	+	heat	\rightarrow
20		Fe(OH)	3	+	heat	\rightarrow

Answers for Predicting Products of Chemical Reactions

For all combustion reactions of hydrocarbons or hydrogen-carbon-oxygen molecules, the products will always be CO₂ and H₂O (assuming a complete reaction).

	•							
a. Combustion:	$C_{6}H_{12}$	+	9O ₂	\rightarrow	6CO ₂	+	6H ₂ O	
b. Combustion:	$2C_4H_6$	+	11O ₂	\rightarrow	8CO ₂	+	6H ₂ O	
c. Combustion:	$C_6H_{10}O_3$	+	7O ₂	\rightarrow	6CO ₂	+	5H ₂ O	
1. Synthesis: Note that Mg can only for	Mg m Mg ²⁺ and I can	+ only forr	I₂ n I⁻, so th	\rightarrow le produc	MgI ₂ t will mu	st have a	1:2 cation:anion ratio.	
2. Double displacement: Note that the product is <u>ne</u>	$\frac{\text{CuCl}_2}{\text{Dt} \text{H}_2\text{Cl}_2}.$ It is imp	+ ortant to	H ₂ S recogniz	\rightarrow e that Cu	CuS Cl ₂ is ma	+ ide of thre	2HCl ee ions, Cu^{2+} and two Cl^{-} .	
3. Double displacement: In this question, you must break apart. Also, this is a	NaOH recognize that per an acid-base reacti	+ chlorate, on, so the	$HClO_4$, ClO_4 , and e product	\rightarrow nd hydrox as should	NaClO4 xide, OH be salt ar	, are poly d water.	H_2O yatomic ions and will not	
4. Decomposition: When reactions have heat compounds usually decon	$ZnCO_3$ as a reactant, it is pose to CO_2 and a	+ very like a metal o	heat ly that th xide.	→ ey will ir	ZnO wolve de	+ ecomposit	CO ₂ ions. Carbonate	
5. Single replacement: $2HCl + Zn \rightarrow ZnCl_2 + H_2$ Note that one reactant is in its elemental form; if a single replacement reaction is going to occur, the species NOT in its elemental form in the reactants (H ⁺ in this case), will end up in its elemental form in the products (H ₂) and the species that IS in its elemental form (Zn) will end up ionized (Zn ²⁺). Note that zinc can <i>only</i> form a Zn ²⁺ ion, so it will have two chloride ions. Note also that hydrogen in its elemental form is H ₂ , not H.								
6. <u>Single replacement</u> Again notice that one spec transformed into its eleme	2Na cies is in its element ental state (Mg), w	+ ntal form hile the N	MgCl ₂ (Na). The second	\rightarrow he magne verted int	2NaCl sium in l o an ion	+ MgCl ₂ is (Na ⁺ , sod	Mg an ion (Mg ²⁺), but is ium <i>only</i> forms a +1 ion).	
7. <u>Double replacement</u> Recognize that carbonate	CaCl ₂ is a polyatomic ion	$^{+}$ n (CO ₃ ²⁻)	K ₂ CO ₃ and that	\rightarrow the cation	CaCO ₃ ns are alr	+ eady stab	$\frac{2KCl}{le ions} (Ca^{2+} and K^{+}).$	
8. <u>Synthesis</u> Note that both materials a and Cl ⁻ are formed. Note simplest forms.	2K re elemental speci- that we would NC	+ es, so the)T write t	Cl ₂ conly res he produ	\rightarrow ult could ct as K ₂ C	2KCl be a synt Cl ₂ . Ionic	thesis rea compour	ction. In the product, K^+ nds are written in their	
9. <u>Double replacement</u> Note that phosphate (PO ₄ phosphate will have a 3:2	3BaCl ₂) is a polyatomic ratio of Ba:PO ₄ in	+ ion and v order to	2K ₃ PO ₄ will not b balance t	\rightarrow reak apar the charge	Ba ₃ (PO t. Since e.	4)2 barium is	+ 6KCl a +2 ion, the barium	
10. <u>Double replacement</u> Notice that sulfate $(SO_4^{2^-})$ reaction, so the products s	H_2SO_4 is a polyatomic ic hould be salt and	+ on and tha water.	<mark>2KOH</mark> at potassi	→ um exists	$\frac{2H_2O}{as a + 1}$	+ ion (K ⁺).	$\frac{K_2SO_4}{Also}$, this is an acid-base	
11. <u>Decomposition</u> Another decomposition th oxygen will have a -2 cha	$Al_2(CO)$ at will generate Co rge, O ²⁻).	O_2 and a	+ metal ox	heat ide (note	\rightarrow that Al f	Al ₂ O ₃ orms a +3	+ $\frac{3CO_2}{3}$ ion, Al ³⁺ , and monatomic	

12. <u>Synthesis</u> Each species is in its elemental form aluminum is Al^{3+} and oxygen is O^2 elemental oxygen (O ₂) is diatomic,	4Al + m, so a synthesis n , Al ₂ O ₃ will form but in the produc	3O ₂ reaction is (positive t, you no 1	→ expected and nega longer ha	$2Al_2O_3$ d. Since ative char we eleme	the most s rges must ental oxyg	stable ion cancel ou gen, since	ic form of it). Note th it is now a	hat the n ion.
13. <u>Double replacement</u> Note that there are two polyatomic $+2$ charge so it will require two neg charge (K ⁺), so when it forms a correct or the second	Pb(NO ₃) ₂ ions present in th gative ions to mak npound with nitra	+ e questior te a neutra ate, it mus	2KOH n: nitrate ll salt (Pb t occur w	\rightarrow (NO ₃ ⁻) a $p(OH)_2$). with a 1:1	Pb(OH); and hydro: Note that ratio (KN	xide (OH potassiu: [O ₃).	+ 2). The lea m only has	KNO ₃ d has a a +1
14. <u>Double replacement</u> Notice that the $BaCl_2$ is made of the chlorine. As a result, the chlorine is	H_2SO_4 + ree ions (Ba ²⁺ and n the product will	BaCl ₂ l two Cl ⁻). l not be Cl	$ \xrightarrow{\bullet} BaCl_2 de l_2. $	BaSO ₄	+ epresent a	2HCl a barium :	ion and ele	mental
15. <u>Single replacement</u> With one species in its elemental for form a $+2$ ion (Ca ²⁺) and that the ch	Ca + orm (Ca), this will nlorine can only h	2AgCl l be a sing ave a –1 c	→ le replace charge (C	CaCl ₂ ement read	+ action. N e salt proc	2Ag ote that c luced mu	alcium can st be CaCl	only 2.
16. <u>Double replacement</u> Note that phosphate has a −3 charg	$H_3PO_4 + e(PO_4^{3-})$ and that	FeBr ₃ the iron h	\rightarrow has a +3 c	FePO ₄ charge (F	e^{3+}).	3HBr		
17. <u>Synthesis</u> 6Li + N ₂ \rightarrow 2Li ₃ N Recall that the monatomic charge for lithium is +1 (Li+) and nitrogen is -3 (N ³⁻). To form a neutral compound, there must be three +1 charges to match the one -3 charge.								
18. <u>Double replacement</u> This one should have been easy by water.)	2HCl + now (Plus, thi	Mg(OH) s is an aci) ₂ d-base re	\rightarrow eaction, s	MgCl ₂ o the proc	+ lucts shou	2H ₂ O ald be salt a	and
19. <u>Decomposition</u> Hydroxides will often decompose v lab, you will see a dramatic change	Mg(OH) ₂ with heat to yield involving copper	+ water and r(II) hydro	heat an oxide oxide beco	\rightarrow When oming co	MgO you get to opper(II) o	+ the Che oxide.	H ₂ O mistry of C	opper
20. <u>Decomposition</u> Similar to the question above. Not products.	2Fe(OH) ₃ ice that the metal	+ retains its	heat ionic cha	→ arge, it is	$\frac{\text{Fe}_2\text{O}_3}{\text{Fe}^{3+} \text{ in } \text{b}}$	+ oth the re	3H ₂ O eactants and	£

If you have QUESTIONS about these, PLEASE ASK!!!!!!!!!! I guarantee you will see questions similar to these on tests (including the final exam) and quizzes in class. It's important stuff!