Multiple-Choice Questions on the Fundamental Theorem of Calculus

1. 1969 BC12
 If \(F(x) = \int_0^x e^{-t^2} \, dt \), then \(F'(x) = \)
 - (A) \(2xe^{-x^2} \)
 - (B) \(-2xe^{-x^2} \)
 - (C) \(\frac{e^{-x^2+1}}{-x^2+1} - e \)
 - (D) \(e^{-x^2} - 1 \)
 - (E) \(e^{-x^2} \)

2. 1969 BC22
 If \(f(x) = \int_0^x \frac{1}{\sqrt{t^2 + 2}} \, dt \), which of the following is FALSE?
 - (A) \(f(0) = 0 \)
 - (B) \(f \) is continuous at \(x \) for all \(x \geq 0 \)
 - (C) \(f(1) > 0 \)
 - (D) \(f'(1) = \frac{1}{\sqrt{3}} \)
 - (E) \(f(-1) > 0 \)

3. 1973 AB20
 If \(F \) and \(f \) are continuous functions such that \(F'(x) = f(x) \) for all \(x \), then \(\int_a^b f(x) \, dx \) is
 - (A) \(F'(a) - F'(b) \)
 - (B) \(F'(b) - F'(a) \)
 - (C) \(F(a) - F(b) \)
 - (D) \(F(b) - F(a) \)
 - (E) none of the above

4. 1973 BC45
 Suppose \(g'(x) < 0 \) for all \(x \geq 0 \) and \(F(x) = \int_0^x t g'(t) \, dt \) for all \(x \geq 0 \). Which of the following statements is FALSE?
 - (A) \(F \) takes on negative values.
 - (B) \(F \) is continuous for all \(x > 0 \).
 - (C) \(F(x) = x g(x) - \int_0^x g(t) \, dt \)
 - (D) \(F'(x) \) exists for all \(x > 0 \).
 - (E) \(F \) is an increasing function.
5. 1985 AB42
\[
\frac{d}{dx} \int_2^x \sqrt{1 + t^2} \, dt = \frac{x}{\sqrt{1 + x^2}}
\]
(A) \(\frac{x}{\sqrt{1 + x^2}}\) \hspace{0.5cm} (B) \(\sqrt{1 + x^2} - 5\) \hspace{0.5cm} (C) \(\sqrt{1 + x^2}\) \hspace{0.5cm} (D) \(\frac{x}{\sqrt{1 + x^2}} - \frac{1}{\sqrt{5}}\)

(E) \(\frac{1}{2\sqrt{1 + x^2}} - \frac{1}{2\sqrt{5}}\)

6. 1988 AB13
If the function \(f\) has a continuous derivative on \([0, c]\), then \(\int_0^c f'(x) \, dx = \frac{f(c) - f(0)}{f''(c) - f''(0)}\)

(A) \(f(c) - f(0)\) \hspace{0.5cm} (B) \(|f'(c)| - f(0)\) \hspace{0.5cm} (C) \(f(c)\) \hspace{0.5cm} (D) \(f(x) + c\) \hspace{0.5cm} (E) \(f''(c) - f''(0)\)

7. 1988 AB25
For all \(x > 1\), if \(f(x) = \int_1^x \frac{1}{t} \, dt\), then \(f'(x) = \frac{1}{x}\)

(A) \(1\) \hspace{0.5cm} (B) \(\frac{1}{x}\) \hspace{0.5cm} (C) \(\ln x - 1\) \hspace{0.5cm} (D) \(\ln x\) \hspace{0.5cm} (E) \(e^x\)

8. 1988 BC14
If \(F(x) = \int_1^x \sqrt{1 + t^3} \, dt\), then \(F'(x) = \frac{2x}{2\sqrt{1 + x^3}}\)

(A) \(2x\sqrt{1 + x^6}\) \hspace{0.5cm} (B) \(2x\sqrt{1 + x^3}\) \hspace{0.5cm} (C) \(\sqrt{1 + x^6}\) \hspace{0.5cm} (D) \(\sqrt{1 + x^3}\) \hspace{0.5cm} (E) \(\int_1^x \frac{3t^2}{2\sqrt{1 + t^3}} \, dt\)

9. 1993 AB41
\[
\frac{d}{dx} \int_0^x \cos(2\pi u) \, du = \frac{1}{2\pi} \sin x
\]

(A) 0. \hspace{0.5cm} (B) \(\frac{1}{2\pi} \sin x\) \hspace{0.5cm} (C) \(\frac{1}{2\pi} \cos(2\pi x)\) \hspace{0.5cm} (D) \(\cos(2\pi x)\) \hspace{0.5cm} (E) \(2\pi \cos(2\pi x)\)
10. 1993 BC41

Let \(f(x) = \int_{-2}^{x} e^t \, dt \). At what value of \(x \) is \(f(x) \) a minimum?

(A) For no value of \(x \) \(\frac{1}{2} \) \(\frac{3}{2} \) \(2 \) \(3 \)

11. 1997 AB78

The graph of \(f \) is shown in the figure above. If \(\int_{1}^{3} f(x) \, dx = 2.3 \) and \(F'(x) = f(x) \), then \(F(3) - F(0) = \int_{0}^{3} f(x) \, dx \).

(A) 0.3 \(\frac{3}{2} \) \(3.3 \) \(4.3 \) \(5.3 \)

12. 1997 BC22

The graph of \(f \) is shown in the figure above. If \(g(x) = \int_{a}^{x} f(t) \, dt \), for what value of \(x \) does \(g(x) \) have a maximum?

(A) \(a \) \(b \) \(c \) \(d \)

(E) It cannot be determined from the information given.
13. 1997 BC88
Let \(f(x) = \int_0^x \sin t \, dt \). At how many points in the closed interval \([0, \sqrt{\pi}]\) does the instantaneous rate of change of \(f \) equal the average rate of change of \(f \) on that interval?

(A) Zero
(B) One
(C) Two
(D) Three
(E) Four

14. 1997 BC89
If \(f \) is the antiderivative of \(\frac{x^2}{1 + x^5} \) such that \(f(1) = 0 \), then \(f(4) = \)

(A) -0.012
(B) 0
(C) 0.016
(D) 0.376
(E) 0.629

15. 1998 AB9
The flow of oil, in barrels per hour, through a pipeline on July 9 is given by the graph shown above. Of the following, which best approximates the total number of barrels of oil that passed through the pipeline that day?

(A) 500
(B) 600
(C) 2,400
(D) 3,000
(E) 4,800
16. 1998 AB11
If \(f \) is a linear function and \(0 < a < b \), then \(\int_a^b f''(x) \, dx = \)

(A) 0 (B) 1 (C) \(\frac{ab}{2} \) (D) \(b - a \) (E) \(\frac{b^2 - a^2}{2} \)
\(f''(x) = 0 \) \(f(x) \) is linear

17. 1998 AB15
If \(F(x) = \int_0^x \sqrt{3t^3 + 1} \, dt \), then \(F'(2) = \)

(A) -3 (B) -2 (C) 2 (D) 3 (E) 18
\[F'(x) = \sqrt{3x^3 + 1} \quad F'(2) = 3 \]

18. 1998 AB88
Let \(F(x) \) be an antiderivative of \(\frac{\ln x}{x} \). If \(F(1) = 0 \) then \(F(9) = \)

(A) 0.048 (B) 0.144 (C) 5.827 (D) 23.308 (E) 1,640.250
\[F(9) = \int_1^9 \frac{\ln t}{t} \, dt \]

19. 1998 BC88
Let \(g(x) = \int_a^x f(t) \, dt \), where \(a \leq x \leq b \). The figure above shows the graph of \(g \) on \([a, b]\). Which of the following could be the graph of \(f \) on \([a, b]\)?

(A)
(B)
(C)
(D)
(E)
20. 2003 AB22

The graph of f', the derivative of f, is the line shown in the figure above. If $f(0) = 5$, then $f(1) =$

(A) 0 (B) 3 (C) 6 (D) 8 (E) 11

21. 2003 AB82/BC82

The rate of change of the altitude of a hot-air balloon is given by $r(t) = t^3 - 4t^2 + 6$ for $0 \leq t \leq 8$. Which of the following expressions gives the change in altitude of the balloon during the time the altitude is decreasing?

(A) $\int_{1.572}^{3.514} r(t) \, dt$

(B) $\int_0^8 r(t) \, dt$

(C) $\int_0^{2.667} r(t) \, dt$

(D) $\int_{1.572}^{3.514} r'(t) \, dt$

(E) $\int_0^{2.667} r'(t) \, dt$
27. 2003 BC80
Insects destroyed a crop at the rate of \(\frac{100e^{-0.1t}}{2 - e^{-3t}} \) tons per day, where time \(t \) is measured in days. To the nearest ton, how many tons did the insects destroy during the time interval \(7 \leq t \leq 14 \)?
(A) 125 (B) 100 (C) 88 (D) 50 (E) 12

28. 2003 BC87
A particle moves along the x-axis so that at any time \(t \geq 0 \), its velocity is given by \(v(t) = \cos(2 - t^2) \). The position of the particle is 3 at time \(t = 0 \). What is the position of the particle when its velocity is first equal to 0?
(A) 0.411 (B) 1.310 (C) 2.816 (D) 3.091 (E) 3.411

Position \(z = 3 + \int_{0}^{t} v(t) \, dt \)

Additional Problems

1. Suppose \(f \) is a continuous function such that
\[
\int_{0}^{x} f(t) \, dt = x^2 \sin x - \int_{0}^{x} t^2 f(t) \, dt
\]
for all \(x \). Find an explicit formula for \(f(x) \) and sketch a graph of \(y = f(x) \).

2. Consider the function \(F \) defined by \(F(x) = \int_{0}^{x} |\sin t| \, dt \).
 (a) Compute \(F'(x) \) and use this to find the intervals on which the graph of \(y = f(x) \) is increasing and the intervals on which the graph is decreasing.
 (b) Find the absolute maximum value and the absolute minimum value of \(y = F(x) \) (if they exist).
 (c) Sketch a graph of \(y = f(x) \).

3. Consider the function \(F \) defined by \(F(x) = \int_{1}^{x} (\sin t + \ln t) \, dt \) for \(x > 0 \).
 (a) Approximate the value(s) of \(x \) for which the graph of \(y = F(x) \) has a local minimum value or local maximum value.
 (b) Sketch a graph of \(y = f(x) \).
2. The rate at which people enter an amusement park on a given day is modeled by the function \(E \) defined by

\[
E(t) = \frac{15600}{(t^2 - 24t + 160)}.
\]

The rate at which people leave the same amusement park on the same day is modeled by the function \(L \) defined by

\[
L(t) = \frac{9890}{(t^2 - 38t + 370)}.
\]

Both \(E(t) \) and \(L(t) \) are measured in people per hour and time \(t \) is measured in hours after midnight. These functions are valid for \(9 \leq t \leq 23 \), the hours during which the park is open. At time \(t = 9 \), there are no people in the park.

(a) How many people have entered the park by 5:00 P.M. \((t = 17)\)? Round your answer to the nearest whole number.

(b) The price of admission to the park is $15 until 5:00 P.M. \((t = 17)\). After 5:00 P.M., the price of admission to the park is $11. How many dollars are collected from admissions to the park on the given day? Round your answer to the nearest whole number.

(c) Let \(H(t) = \int_9^t (E(x) - L(x)) \, dx \) for \(9 \leq t \leq 23 \). The value of \(H(17) \) to the nearest whole number is 3725. Find the value of \(H'(17) \), and explain the meaning of \(H(17) \) and \(H'(17) \) in the context of the amusement park.

(d) At what time \(t \), for \(9 \leq t \leq 23 \), does the model predict that the number of people in the park is a maximum?

\[
\begin{align*}
\text{(a) } & \int_9^{17} E(t) \, dt = 6004 \text{ people} \\
\text{(b) } & 15 \int_9^{17} E(t) \, dt + 11 \int_9^{23} E(t) \, dt \\
& \approx 1104.048 \\
\text{(c) } & H'(t) = E(t) - L(t) \\
& H'(17) = E(17) - L(17) = -380.281 \\
& H(17) = 3725 \text{ means there were } 3725 \text{ in the park at } t=17 \text{ (5:00 PM)} \\
& \text{and } H'(17) = -380.281 \text{ means the} \\
& \text{rate of people in the park was decreasing at a rate of 380 people/hr}.
\end{align*}
\]
2002 AP® CALCULUS BC FREE-RESPONSE QUESTIONS

CALCULUS BC
SECTION II, Part B
Time—45 minutes
Number of problems—3

No calculator is allowed for these problems.

4. The graph of the function \(f \) shown above consists of two line segments. Let \(g \) be the function given by \(g(x) = \int_0^x f(t) \, dt \).

(a) Find \(g(-1) \), \(g'(-1) \), and \(g''(-1) \).

(b) For what values of \(x \) in the open interval \((-2, 2)\) is \(g \) increasing? Explain your reasoning.

(c) For what values of \(x \) in the open interval \((-2, 2)\) is the graph of \(g \) concave down? Explain your reasoning.

(d) On the axes provided, sketch the graph of \(g \) on the closed interval \([-2, 2]\).

(Note: The axes are provided in the pink test booklet only.)