| Skills Worksheet | - Wave | Speed |
|------------------|--------|-------|
|------------------|--------|-------|

Name: \_\_\_\_\_

Complete the following calculations: be sure to write the equation used and to include units in the answer

$$v = f\lambda$$

$$T = \frac{1}{f}$$

$$f = \frac{1}{T}$$

## PRACTICE

- 1. A certain FM radio station broadcasts electromagnetic waves at a frequency of  $9.05 \times 10^7$  Hz. These radio waves travel at a speed of  $3.00 \times 10^8$  m/s. What is the wavelength of these radio waves?
- 2. A dog whistle is designed to produce a sound with a frequency beyond that which can be heard by humans (between 20,000 Hz and 27,000 Hz). If a particular whistle produces a sound with a frequency of  $2.5 \times 10^4$  Hz, what is the sound's wavelength? Assume the speed of sound in air is 331 m/s.
- 3. The lowest pitch that the average human can hear has a frequency of 20.0 Hz. What is the wavelength of a 20.0 Hz wave with a speed of 331 m/s?
- 4. A 10.0 m wire is hung from a high ceiling and held tightly below by a large mass. Standing waves are created in the wire by air currents that pass over the wire, setting it in motion. If the speed of the standing wave is 335 m/s and its frequency is 67 Hz, what is its wavelength?
- 5. Sonar is a device that uses reflected sound waves to measure underwater depths. If a sonar signal has a frequency of 288 Hz and the speed of sound in water is  $1.45 \times 10^3$  m/s, what is the wavelength of the sonar signal?
- 6. Cicadas produce a buzzing sound that has a wavelength in air of 2.69 m. If the speed of sound in air is 346 m/s, what is the frequency of the sound produced by a cicada? What is its period?
- 7. A drum is struck, producing a wave with a wavelength of 110 cm and a speed of  $2.42 \times 10^4$  m/s. What is the frequency of the wave? What is the period?

| 8   | . One of the largest organ pipes is in the auditorium organ in the convention hall in Atlantic City, New Jersey. The pipe is 38.6 ft long and produces a sound with a wavelength of about 10.6 m. If the speed of sound in air is 346 m/s, what is the frequency of this sound?                                                                                                        |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9   | . Yellow light with a wavelength of $5.89 \times 10^{-7}$ m travels through quartz glass with a speed of $1.94 \times 10^8$ m/s. What is the frequency of the light?                                                                                                                                                                                                                   |
| 10  | . A wave with a frequency of 60.0 Hz travels through vulcanized rubber with a wavelength of 0.90 m. What is the speed of this wave?                                                                                                                                                                                                                                                    |
| 11. | A wave with a frequency of 60.0 Hz travels through steel with a wavelength of 85.5 m. What is the speed of this wave?                                                                                                                                                                                                                                                                  |
| MI  | XED PRACTICE                                                                                                                                                                                                                                                                                                                                                                           |
|     | Earthquakes generate shock waves that travel through Earth's interior to other parts of the world. The fastest of these waves are longitudinal waves, like sound waves, and are called <i>primary waves</i> , or just <i>p-waves</i> . A p-wave has a very low frequency, typically around 0.050 Hz. If the speed of a p-wave with this frequency is 8.0 km/s, what is its wavelength? |
| 13. | Earthquakes also produce transverse waves that move more slowly than the p-waves. These waves are called <i>secondary waves</i> , or <i>s-waves</i> . If the wavelength of an s-wave is $2.3 \times 10^4$ m, and its speed is $4.5$ km/s, what is its frequency?                                                                                                                       |
| 14. | A dolphin can typically hear sounds with frequencies up to 150 kHz. What is the speed of sound in water if a wave with this frequency has a wavelength of 1.0 cm?                                                                                                                                                                                                                      |
|     | A ship anchored at sea is rocked by waves that have crests 14 m apart. The waves travel at 7.0 m/s. How often do the wave crests reach the ship?                                                                                                                                                                                                                                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                        |

Complete the following calculations: be sure to write the equation used and to include units in the answer

$$v = f\lambda$$

$$T = \frac{1}{f}$$

$$f = \frac{1}{T}$$

## **PRACTICE**

1. A certain FM radio station broadcasts electromagnetic waves at a frequency of  $9.05 \times 10^7$  Hz. These radio waves travel at a speed of  $3.00 \times 10^8$  m/s. What is the wavelength of these radio waves?

$$V = f \lambda$$
 $3.00 \times 10^8 \text{ m/s} = 9.05 \times 10^7 \text{ Hz} \cdot \lambda$ 
 $\lambda = 3.31 \text{ m}$ 

2. A dog whistle is designed to produce a sound with a frequency beyond that which can be heard by humans (between 20,000 Hz and 27,000 Hz). If a particular whistle produces a sound with a frequency of  $2.5 \times 10^4$  Hz, what is the sound's wavelength? Assume the speed of sound in air is 331 m/s.

$$V = f \lambda$$
  
 $331 \text{m/s} = 2.5 \times 10^{4} \cdot \lambda$   
 $\lambda = .013 \text{ m}$ 

3. The lowest pitch that the average human can hear has a frequency of 20.0 Hz. What is the wavelength of a 20.0 Hz wave with a speed of 331 m/s?

4. A 10.0 m wire is hung from a high ceiling and held tightly below by a large mass. Standing waves are created in the wire by air currents that pass over the wire, setting it in motion. If the speed of the standing wave is 335 m/s and its frequency is 67 Hz, what is its wavelength?

$$V = f \lambda$$
  
335 m/s = 67 Hz ·  $\lambda$   
 $\lambda = 5.0 m$ 

5. Sonar is a device that uses reflected sound waves to measure underwater depths. If a sonar signal has a frequency of 288 Hz and the speed of sound in water is  $1.45 \times 10^3$  m/s, what is the wavelength of the sonar signal?

$$V = f \lambda$$
  
 $1.45 \times 10^{3} \text{ m/s} = 288 \text{ Hz} \cdot \lambda$   
 $\lambda = 5.03 \text{ m}$ 

6. Cicadas produce a buzzing sound that has a wavelength in air of 2.69 m. If the speed of sound in air is 346 m/s, what is the frequency of the sound produced by a cicada? What is its period?

$$346m/s = f \cdot 2.69m$$
  
 $f = 129 \text{ HZ}$   $T = \frac{1}{f}$   $T = \frac{1}{129 \text{ HZ}} = .00775$   
 $= 7.75 \times 10^{-3} \text{ sec}$ 

7. A drum is struck, producing a wave with a wavelength of 110 cm and a speed of  $2.42 \times 10^4$  m/s. What is the frequency of the wave? What is the period?

$$V = f \lambda$$

2.42×10<sup>4</sup>m/s =  $f \cdot 1.10$  T=  $f$ 

2.2000 HZ

 $f = 22000$  HZ

=  $2.2 \times 10^4$  HZ



$$V = f \lambda$$
  
346 m/s = f · 10.6 m  $f = 32.6 HZ$ 

9. Yellow light with a wavelength of  $5.89 \times 10^{-7}$  m travels through quartz glass with a speed of  $1.94 \times 10^8$  m/s. What is the frequency of the light?

$$V=f\lambda$$
1.94 × 108 m/s = f . 5.89 × 10<sup>-7</sup> m
$$f - 3.29 \times 10^{14} Hz$$

10. A wave with a frequency of 60.0 Hz travels through vulcanized rubber with a wavelength of 0.90 m. What is the speed of this wave?

11. A wave with a frequency of 60.0 Hz travels through steel with a wavelength of 85.5 m. What is the speed of this wave?

wave? 
$$V = f\lambda$$
 $V = 00.0 \text{ Hz} \cdot 85.5 \text{ m}$ 
 $V = 5130 \text{ m/s}$ 
 $V = 5.13 \times 10^3 \text{ m/s}$ 

## **MIXED PRACTICE**

12. Earthquakes generate shock waves that travel through Earth's interior to other parts of the world. The fastest of these waves are longitudinal waves, like sound waves, and are called *primary waves*, or just *p-waves*. A p-wave has a very low frequency, typically around 0.050 Hz. If the speed of a p-wave with this frequency is 8.0 km/s, what is its wavelength?

$$V = f \lambda$$
8000 m/s = .050 HZ · \lambda
= 160000 m = 1.6 × 105 m

13. Earthquakes also produce transverse waves that move more slowly than the p-waves. These waves are called secondary waves, or s-waves. If the wavelength of an s-wave is  $2.3 \times 10^4$  m, and its speed is 4.5 km/s, what is its frequency?  $4.5 \times 10^4$  m,  $4.5 \times 10^4$  m

4500 m/s = 
$$f \cdot 2.3 \times 10^{11}$$
 m
$$f = .1956 \text{ Hz} = .20 \text{ Hz}$$
14. A dolphin can typically hear sounds with frequencies up to 150 kHz. What is the speed of sound in water if a

14. A dolphin can typically hear sounds with frequencies up to 150 kHz. What is the speed of sound in water if a wave with this frequency has a wavelength of 1.0 cm?

$$V=f\lambda$$
 $V = 150,000 Hz \cdot 101m$ 
 $V = 1500 m/s$ 
 $V = 1.5 \times 10^3 m/s$ 

15. A ship anchored at sea is rocked by waves that have crests 14 m apart. The waves travel at 7.0 m/s. How often do the wave crests reach the ship?

the wave crests reach the ship?

$$Crests$$
 14m apart  $V=f\lambda$ 
 $T=f$ 
 $T=f$ 
 $SHZ=2sec$ 
 $SHZ=14m$ 
 $SHZ=3sec$ 
 $Ship every 2sec$